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Abstract: In 2022, Shyam Lal, Susheel Kumar, and their collaborators intro-
duced pseudo-Chebyshev wavelets in the context of one-dimension. Building on this
foundation, the present study extends the framework to two dimensions. A two-
dimensional pseudo-Chebyshev wavelet expansion is formulated and verified, and
a novel algorithm is proposed for solving approximation problems. The method’s
effectiveness is demonstrated through illustrative examples and comparisons with
standard Chebyshev wavelet methods. Error and convergence analyses are con-
ducted for functions in the Holder class, and the approximation error is estimated
using generalized orthogonal projection operators. In this paper, we present sev-
eral refinements of our current results, supported by illustrative examples that not
only yield sharper bounds but also offer a more comprehensive and rigorous under-
standing of the underlying mathematical structure.
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1. Introduction

Wavelet theory has emerged as a fundamental tool in applied mathematics,
offering efficient methods for analyzing localized features of functions at various
scales. At the same time, Chebyshev polynomials introduced by Pafnuty Cheby-
shev in the 19th century have played a pivotal role in approximation theory, valued
for their orthogonality and superior convergence characteristics.

To combine the advantages of both approaches, researchers have investigated
hybrid wavelet constructions built upon classical orthogonal polynomials. In this
context, the concept of pseudo-Chebyshev wavelets was first introduced by Shyam
Lal, Susheel Kumar, and their collaborators in 2022 through their paper titled
"Error bounds of a function related to generalized Lipschitz class via the pseudo-
Chebyshev wavelet and its applications in the approximation of functions [14].

This wavelet family was developed by modifying Chebyshev polynomials specif-
ically by adjusting the collocation points and weights to form an effective wavelet
system capable of accurately approximating both smooth and piecewise smooth
functions. These wavelets exhibit strong convergence properties and offer rigorous
error bounds for functions belonging to the generalized Lipschitz class [14].

Subsequent advancements employed these wavelets for approximating abso-
lutely continuous signals and solving Abel’s integral equations, highlighting their
effectiveness within integral operator frameworks and many more [7, 8, 9, 10]. Their
extension to two dimensions expanded their applicability to multivariate problems
[5, 6], while the introduction of orthogonal projection operators based on extended
pseudo-Chebyshev wavelet series offered refined theoretical insights and enhanced
approximation estimates [4].

In the framework of the theory of special functions, the introduction of two-
dimensional pseudo-Chebyshev wavelet-based constructions represents a meaning-
ful step forward in the generalization and analytical deepening of this field. The
development of such wavelet-driven operators demonstrates that the theory of spe-
cial functions and polynomials can continue to evolve through the integration of
modern approximation techniques and computational algorithms. In particular,
this approach offers a rigorous pathway for extending classical families to multivari-
ate contexts while preserving key structural properties such as orthogonality and
convergence. Therefore, it is appropriate to strengthen the introduction by citing
both foundational and recent contributions that have enriched the theory through
methodologies such as operational calculus, g-analysis, and threshold-based frame-
works, as well as recent advances in wavelet analysis, see ([3, 12, 13, 15, 16, 17,
19]).

Building on previous work, this study investigates the mathematical properties
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and applications of two-dimensional pseudo-Chebyshev wavelets through a general-
ized orthogonal projection operator based on Cesaro sums of order one. It focuses
on error analysis, convergence behavior, and the practical implementation of this
method for solving multivariable approximation problems.

2. Definitions and Preliminaries

2.1. Function of Holders class in two variable
A two variable real valued function f : Q2 — R, is said to be function of Holder’s
class

i.e. fEH(aB (R),
if there exists a number & > 0 such that
flw+v,@+v)— flwo)| = s(v]*+[v])=0(v*+|v]’).[5,6].

2.2. Two-Dimensional Pseudo-Chebyshev Wavelet (PCW)
The two dimensional PCW ¥, y.,v 9y are defined by

lp(n,ﬂ;n’,ﬁ’) (w7 w) = w(ssn/ 9) (w7 w) = 2/}(977,19) (w) X 2/}(97]’,19’)<w)
doletd )/QP(19+1/2)(29¢0 —2n+ 1)P(19/+1/2)(29w — 27"+ 1),

~1 '—1
= <wg291,&2911§w§2911a
0, otherw1se,
where 9,9’ are non negative integers and n = 1,2,3,---, 2271, o = 1,2,3,
2071 & o, o are a positive integers.
Prys1/2)(w) = cos ((9 +1/2) (arccosw)) ¥ = 0,1,2,---, and recurrence relations

are given by,
Pﬂuﬂ/g(w) = ZMP(ﬂ//_l/Q) (W)_P(ﬁ//_3/2)(W), with Pﬂ/g(w) = 1+w v S N 866{14].

2.3. Cesaro means
o0
An infinite series ) u,, is said to be summable to the sum s by Cesaro means

. n=0

of an order one if,

. Lofor 0<j<k<

S >RSN,

t, = ; wh =q ntl .
n = 2D ansy where any { 0 forj>k>n.

7=0 k=0

koo n

1 k
= g oy g = lim E E uj = E s, where s, = g u;j
n—oo n%oon 1

7=0 k=0 k=0 j=0

I
E’J
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This sum is denoted by symbolically > u, = s(C, 1), [2, 18].
n=0
Let >> > un, be a double infinite series (Bromwich[l],p.29), is said to be
n=0n'=0
summable to the sum s by Cesaro means of an order one if,

oo o 0 o0

b = Z Z Z Z A’k k) U(.5")

7=0 k=0 j/=0 k'=0

1 . -/ / /

— for 0<j<k<n, &0<j <k <n

gy = 4 DD SJsksn 0SSR s,
Wherea(n,n,k,k‘) {0 forj>k>n&j,>k,>n/

koo 00
:Z Zzann’kzk' U5, = Zn+1zzn+1zu (4,9")

j=0 k=0 j'=0k'=

(nn/)la(oooo>(n+1 (n' +1) ZZ S(kkr) Where s ) = ZZu”)

k: 0 k'= j=0 §/=0

n n 1 1
—  lim 1— —— ) (1= ——= | ugw
(m,1)=+(00,00) 2 2) ( (n+ 1)> ( (n' + 1)) )

k=0 K’

nn’)—) 00,00)

=S.

This sum is denoted by symbolically > > umny = s(C,1,1).
n=0n’=0

Remark

(i) If i u, =S, then i un, = s(C, 1).
n=0

n=0

(it) Aninfinite series Y. (—1)" is not convergent but Y (—1)" = 3(C, 1), see [18].
n=0 n=0

(1i3) If i i Up = S, then i i Upm = $(C,1,1).

n=0n’=0 n=0n’=0

oo o ’
(iv) An infinite series Y. S (=1)"™™ is not convergent but
n=0mn'=0

3 (1) = L(C,1,1) see [11].

n=0n'=0
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2.4. Generalized Orthogonal Projection Operator
An orthogonal projection operator is a surjective map ®, : L3 — V,, defined by

(see [8])

o,(f) = > (f, Vi0)) o Vi), fixed 7 =1,2,3,---2¢71, g € N,

m=0

The two dimensional orthogonal projection operator @, : L3 — Vi) is given
by

Sy () = DD awon Vo),

¥'=0 ¥9=0
fixed n=1,2,3---22" 5 =1,23,---2971 0 €N,

= 2 Z (W) o) T

9=0 ¢ = (nsm”)

where a9 //f w, @)Wy (W, w)w, ( )(w w)dwdw.

The generalized orthogonal operator by (C,1,1) method is denoted by @8’7’”,)( f)
and given by

D> Z:: (1 Ty 1) (1 R 1) {f, %;ﬁ')>wgave;§ Vi)

mn

2.5. Two-Dimensional Pseudo-Chebyshev Wavelet Series
A function f € L2, (R) is expanded by two dimensional PCW series as [5, 6]:

oo o 0

ZZZ ZO‘WW’ 19’>¢(m9)¢(n/ 97 (1)

n=1 9=0 n'=19'=
where o 9.y9) = //f w, @)Y 7779 w"(w)z/}(( /)19/) 5’

(w)dwdw.
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2.6. Function Approximation

A two dimensional real valued function f defined on Q? may be expanded
in terms of the two dimensional PCW series (1). If an infinite series (1) is approx-
imated by the generalized orthogonal projection operators (I)(n o )( f), then

20— 1 129 1

Z Z Z Z < n + 1) (1 T F 1) <f7 (950’ > w(@?) (9,0 ¥, 05m' 07

n=19=0 n’=1 ¥'= (nn’)
= (T,¥)=7T"V¥ where Y7 indicates transpose of a matrix T,

I =fo

where Y and ¥ are 20710291/ x 1 matrices and (Y, ¥) is an inner product of
column vectors T and U (see[14]) .

2.7. Error of Wavelet Approximation
The error (& p)( f) of wavelet approximation of a function f by the generalized

orthogonal projection operators @&7 p)( f) is defined by

Cnp)(f) = Ginf(f)“q)&p) — fllz where R =2"! << 00, and g€ N.

(R,p)

If error () —+ 0 as X — oo or p — oo then <I>(G R (f) is called the best wavelet

approximation of a function f € L3 (R) (see[3,20]).
The error (x pav oy of two dimensional PCW approximation of a function f €
L%, (R) by the operators q)&p;w’p,) is given by

(o) = inf [|f - CI)NpN/ ||2

If error (pav,ey — 0 as X, N — oo or g, 0" — oo then CI)(GNMN,yp/)(f) = foy is
called the best wavelet approximation of a function f € L2, (R).

3. Main results

3.1. In this section, two new theorems have been established in the following forms:

Theorem 1. Let f € Hg(;’ﬁ) (R) be a function, and let its two-dimensional Pseudo-
Chebyshev wavelet series expansion be given by

oo o 0 0

[~ Z Z Z Z 0 0 (.07 9

n=1 9=0 /=1 9'=0

where the coefficients are defined by
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X n,d5m'0") = /92 flp(n,ﬂ;n’ﬁ’)wgiz’dﬂ'
Then the error (i pav o) in the two-dimensional Pseudo-Chebyshev wavelet (PCW)

approxz’matz’on of the function f, using the generalized orthogonal projection oper-
ator (I)(nn )(f), is given by

s =0 (1=553) (=751 (o o) i
(N,@o;N ") = o+ 1 o +1 N(a+1) N(B+1) \/(p—i-l/z) (p/+1/2)

Proof of Theorem 1. Since,

_ : (G.f)
(C(N@;N’,p’))Q = (G}ﬁf If = ®(NSON’@)H§7
(R, 0587, 0")

2
_q)m%f / f_¢(N7p;N’,p/) dy,

(R ,0") 2

1 \? 1 \?
S (- (-5
{p.p'} p+1 O +1

N oo W 1)
Z Z Z Z 8(71'77774"/,771')\I[(n,m;n’,m’)

n=1m=pn'=1m'=p’

2 2
it (1_L) (1_ ! )
{p.9'} p+1 O +1

N Ny %) 00 R N 0o .
" <Z Z Z Z Emmaintmi) ¥ Z Z Z Z 5(”21m2;"/21m,2)\11>a

2

Y

n1=1n{=1mi=p m)=p n2=1ni=1ma=p m{=¢p'
R 1N 0o 00 R N 0o 00
Z{glpf,} DY DD i) D D D D Elnmmamtymty);
ni=1nl=1mi=p m)=p n2=1n,=1ma=p m,H=¢

1\’ I
g <1_m) (1‘ gy+1) (Vs )s @ sy ) o

sice <\I/(n1,m1;n'1 mi)» ‘;[j(nz,m2§n’2,m'2)>wf]:f]; = 5(”1:”2)5(”117”12)5(71,’1 ,né)é(m’l,m’z)7

1 2 1 2 X N o 00 ,
:{gylpf/} (1_M) (1_ 1) ZZZ Z |€(n7m;n’,m’)| .

n=1n/=1m=p m/=p’
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Now,
E(mmin’,m!') = <f \I} (n,m;n/,m’) o _/ fql(nm” m’) 5:§/du

- / - /,21_ P98, oy ()0l (2) 08, o) (y)wl (y)dady
20—1 S0 —1
n n/
St /nl /n/l <f(z’y)_f( 20 ' 2¢ ))
20-1
X g, ﬂ)<x>w9<x>¢(g/ﬁ,)(y)wf;,(y)dxdy

% 2n—1 2 / /
/ / P (P 25 ) U@t ) 1)y

Next, f € Hg(;’mR and using Lemma 2.3 in [6], we have
U
R 20c 5 2090
/ / WYL gy () o)y

—ma:L‘ {k,2K0} ( o T

9 162 1
(C(N,W;N’vp’)) < 2 <1_ ga—l—l) <

(5“ <(m+1/2)(m +1/2)>
8 Z Z <m+1/2 )/ +1/2)

IN

‘ E(n7m;n, ?m/)

IN

)
1 2
A2 (v + )
m= pm >
_oek? 1 N, 1 1)
- ox2 B p+1 p’ +1 N(a+1) T N/(8+1)

X where,x’ = max {k, 2k} see Lemma 2.2 in [6].
(p+1/2) (¢" +1/2)

Therefore,

G =0 <1—1><1— 1)( ! + ! > L
Rp,0") = o+1 O +1) \Re+) T N6 ) (61 172) (¢ + 1/2)
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Thus the establishment of Theorem 1 is now complete.

Theorem 2. Let f € HS(R) be a function, and let its Pseudo-Chebyshev wavelet
series expansion be given by

fo~ D) aman ¥,

n=1 9=0

where the coefficients are defined by

A n,0) = /Q fgowydp.

Then the error ((x,p in the two-dimensional Pseudo-Chebyshev wavelet (PCW) ap-
proximation of the function f, using the generalized orthogonal projection operator
@g(f), is given by

1 1 1
Cag) = O ((1 o+ 1) Netl) (o + 1/2)>

Proof of Theorem 2. The proof of Theorem 2 follows similarly to that of Theorem
1, taking into account the function class f € H3(R) considered therein.

3.2. Corollaries
In this section, two new corollaries related to the Theorems 1 and 2, have been
established in the following forms:

Corollary 1. If f € Haﬁ) (R) be a function, and let its two-dimensional

Pseudo Chebyshev wavelet series expansion for o = o = 1, be given by f ~
Z Z a9 W9,9), where the coefficients are defined by
—09/=

— —

1,1
Qg = /5;2 fw(ﬁvﬂ/)wél,l dlj,

Then the error C (00) in the two-dimension, the Pseudo-Chebyshev wavelet (PCW)

approzimation of the function f, using the generalized orthogonal projection oper-
ator ®C(f), is given by

0o 1 ! 1 1 1
oo =9 <(1 @+1> (1 p’+1> (2(““) i 2(“1)) Vip+1/2) (p’+1/2)>
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Corollary 2. If f € H3(R) be a function, and let its Pseudo-Chebyshev wavelet

[o.¢]
series expansion in dimension for o = 1, is given by f ~ > ayiby,
=0

where the

coefficients are defined by
g = / fgwidp.
Q

Then the error Cé}) in the one-dimension, Pseudo-Chebyshev wavelet (PCW) ap-

prozimation of the function f, using the generalized orthogonal projection operator
DY (f), is given by

W 1 1 1
@=o((- ) w )

4. Illustrative Example

Example 1. In this example, we calculate the approximation of a function

)=

0; t ¢ Q.

2T/2 4 332 4 512 L T2 t € Q,

Table 1: Comparison of PCW and CW approximations for different orders

t 0.00 0.25 0.50 0.75 1.00

f 0 1.5859375 3.9774756442 | 8.6737856848 17.0
PCW £ 0 5.6015625 7.921805658 9.7021908518 11.203125
CwW 9 -1.9927209383 | -0.99636046913 0 0.99636046913 | 1.9927209383
PCW fi 0 0.9921875 4.6624853384 | 9.7021908518 15.8125
CW fl | -0.84404941826 | -1.5706962291 -1.14867152 | 0.42202470913 | 3.1413924583
PCW f3 0 1.53125 3.90013584 8.7685072133 16.890625
CW f¢ -1.0712510935 | -1.3434945539 -1.14867152 0.1948230339 | 3.3685941335
PCW f3 0 1.5859375 3.9774756442 | 8.6737856848 17.0
CW f3 -1.079900473 -1.3391698642 | -1.1573208995 | 0.19914772366 | 3.359944754
PCW f§ 0 1.5859375 3.9774756442 | 8.6737856848 17.0
CW f¢ -1.0914030504 | -1.3449211528 | -1.1573208995 | 0.20489901236 | 3.3714473314
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04
fand 1,

Figure 1: Graph of f and PCWf, and CWf, for different M

Table 2: Comparison of PCW and CW errors (M for various M

t 0.00 0.25 0.50 0.75 1.00
PCW(T 0 1.015625 3.9443300138 1.028405167 5.796875
CWCT | 1.9927209383 | 2.5822979601 | 3.0774756442 | 7.6774252156 | 15.007279062
PCW(2 0 0.59375 0.68500960427 | 1.028405167 1.1875
CWCZ | 0.84404941826 | 3.1566337291 | 5.1261471642 | 8.2517609757 | 13.858607542
PCW(3 0 0.0546875 | 0.077339804192 | 0.094721528530 |  0.109375
CWC | 10712510935 | 2.9204320530 | 5.1261471642 | 8.4789626509 | 13.631405866
PCW(? 0 0 0 0 0
CWCT | 1.079900473 | 2.9251073642 | 5.1347965437 | 8.4746379611 | 13.640055246
PCW(P 0 0 0 0 0
CWCS | 1.0914030504 | 2.9308586528 | 5.1347965437 | 8.4688866724 | 13.628552669
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N > ® 3 S
T T T T
\

Figure 2: Graph of error functions (M

Example 2. In this example, we consider a function defined over two variables,

f.

2t1/2u3/2 + 3t3/2u1/2 + 5t5/2u7/2 + 7t7/2u5/2; (t,u) c QZ’

Consider the Pseudo-Chebyshev series expansions of the function, for o = ¢ =
n=n=1

[c e o)

[~ Z Z (99" Vothy

¥=09%'=0

6.1666100(¢)1o (1) + 2.13764(t)1b1 (1) + 0.456440 (£)1ha(w) + 00383t ()13 (u)
2.387611 ()10 (1) + 0.96641) (
(t)ho(w) (
(t)ho(w) (

)1 (u) (t)p2(u)
)1 (u) + 0.2470¢1 (t)1h2 (u) + 0.019291 (t)1h3(u)
)1 (u) (t)p2(u)
)1 (u) (t)p2(u)

1)1 (1) + 0064440 ()b (1) + 0.00384a (£)13 (w)
t)ah1 (w) 4 0.00549)3 ()2 (u) + 0¢3(t) 3 ()

0.5100%05 (£)1bo (w) + 0.26841s u

0053743 (£)20 (1) + 0.026813
fo,

+ o+ +

11
where  ag,91) = /Q2 fpgwigwidy = / / ft,w)(t)w(2t — D) (uw)w(2u — 1)dtdu, .
=0 u=0
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Exact f(t,u)
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Figure 3: Graph of f, fo,|f — fo| in 3D and f, fo in 2D for M =1
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Figure 4: Graph of f, fo,|f — fo| in 3D and f, fo in 2D for M =2
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Exact f(t,u) Approximation f¥(t,u)
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10 10
8 8
3 6
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Figure 5: Graph of f, fo,|f — fo| in 3D and f, fo in 2D for M =3

Exact f(t,u) Approximation f(t,u)
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Absolute Error If - ffI X105 i Exact f vs Approximation ¥ at u = 1
x1078 I 16 w
: LT S
2 12
! ol Exact 1
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06 6
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0 0
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Figure 6: Graph of f, fo,|f — fo| in 3D and f, fo in 2D for M =4
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5. Result Discussion and Conclusions

(i) Since, by Theorems 1 and 2, the errors satisfy

Covpvy) = 0 as (p,or ¢, or X, or X') — oo,
() — 0 as  (p,or X) — oo.

Therefore, the results presented in Theorems 1 and 2 demonstrate that the
pseudo-Chebyshev wavelet approximations, based on the generalized orthog-
onal projection operators @,/ and ®, respectively, provide highly accurate
representations and are optimal within the framework of wavelet analysis [20].
Furthermore, the numerical results reported in Table 1 and Figures 1, 3, 4, 5,
6 along with the absolute errors displayed in Table 2 and Figure 2, strongly
support the effectiveness of the proposed method.

(ii) In Example 2, by setting u = 1, the problem becomes analogous to that
presented in Example 2. This correspondence is evident upon examining the
solutions illustrated in Figures 1, 3, 4, 5, and 6.

(iii) Figures 1 and 2, together with Tables 1 and 2, clearly illustrate the compara-
tive advantages of the proposed pseudo-Chebyshev wavelets over the classical
Chebyshev wavelets in the context of the present examples. Specifically, the
graphical representations in Figures 1 and 2 show that the pseudo-Chebyshev
wavelets yield more accurate approximations to the target function, with
smoother convergence behavior and reduced oscillations near the boundaries.
Furthermore, the numerical results summarized in Tables 1 and 2 indicate
lower approximation errors and improved stability in the pseudo-Chebyshev
approach. These observations highlight the enhanced performance and suit-
ability of the pseudo-Chebyshev wavelets for solving the considered class of
problems.
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