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1. Introduction

Wavelet theory has emerged as a fundamental tool in applied mathematics,
offering efficient methods for analyzing localized features of functions at various
scales. At the same time, Chebyshev polynomials introduced by Pafnuty Cheby-
shev in the 19th century have played a pivotal role in approximation theory, valued
for their orthogonality and superior convergence characteristics.

To combine the advantages of both approaches, researchers have investigated
hybrid wavelet constructions built upon classical orthogonal polynomials. In this
context, the concept of pseudo-Chebyshev wavelets was first introduced by Shyam
Lal, Susheel Kumar, and their collaborators in 2022 through their paper titled
’Error bounds of a function related to generalized Lipschitz class via the pseudo-
Chebyshev wavelet and its applications in the approximation of functions [14].

This wavelet family was developed by modifying Chebyshev polynomials specif-
ically by adjusting the collocation points and weights to form an effective wavelet
system capable of accurately approximating both smooth and piecewise smooth
functions. These wavelets exhibit strong convergence properties and offer rigorous
error bounds for functions belonging to the generalized Lipschitz class [14].

Subsequent advancements employed these wavelets for approximating abso-
lutely continuous signals and solving Abel’s integral equations, highlighting their
effectiveness within integral operator frameworks and many more [7, 8, 9, 10]. Their
extension to two dimensions expanded their applicability to multivariate problems
[5, 6], while the introduction of orthogonal projection operators based on extended
pseudo-Chebyshev wavelet series offered refined theoretical insights and enhanced
approximation estimates [4].

In the framework of the theory of special functions, the introduction of two-
dimensional pseudo-Chebyshev wavelet-based constructions represents a meaning-
ful step forward in the generalization and analytical deepening of this field. The
development of such wavelet-driven operators demonstrates that the theory of spe-
cial functions and polynomials can continue to evolve through the integration of
modern approximation techniques and computational algorithms. In particular,
this approach offers a rigorous pathway for extending classical families to multivari-
ate contexts while preserving key structural properties such as orthogonality and
convergence. Therefore, it is appropriate to strengthen the introduction by citing
both foundational and recent contributions that have enriched the theory through
methodologies such as operational calculus, q-analysis, and threshold-based frame-
works, as well as recent advances in wavelet analysis, see ([3, 12, 13, 15, 16, 17,
19]).

Building on previous work, this study investigates the mathematical properties
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and applications of two-dimensional pseudo-Chebyshev wavelets through a general-
ized orthogonal projection operator based on Cesàro sums of order one. It focuses
on error analysis, convergence behavior, and the practical implementation of this
method for solving multivariable approximation problems.

2. Definitions and Preliminaries

2.1. Function of Hölders class in two variable
A two variable real valued function f : Ω2 → R, is said to be function of Hölder’s

class

i.e. f ∈ H
(α,β)

Ω2 (R) ,

if there exists a number κ > 0 such that

|f(ω + ν,ϖ + υ)− f(ω,ϖ)| = κ(|ν|α + |υ|β) = O(|ν|α + |υ|β), [5, 6].

2.2. Two-Dimensional Pseudo-Chebyshev Wavelet (PCW)
The two dimensional PCW Ψ(η,ϑ;η′,ϑ′) are defined by

Ψ(η,ϑ;η′,ϑ′)(ω,ϖ) := Ψ
(ϱ,ϱ′)
(η,ϑ;η′,ϑ′)(ω,ϖ) = ψϱ

(η,ϑ)(ω)× ψϱ′

(η′,ϑ′)(ϖ)

=


4
π
2(ϱ+ϱ′)/2P(ϑ+1/2)(2

ϱω − 2η + 1)P(ϑ′+1/2)(2
ϱϖ − 2η′ + 1),

for η−1
2ϱ−1 ≤ ω ≤ η

2ϱ−1 , & η′−1

2ϱ
′−1 ≤ ϖ ≤ η′

2ϱ
′−1 ,

0, otherwise,

where ϑ, ϑ′ are non negative integers and η = 1, 2, 3, · · · , 2ϱ−1, η′ = 1, 2, 3,
· · · , 2ϱ′−1 & ϱ, ϱ′ are a positive integers.
P(ϑ+1/2)(ω) = cos ((ϑ+ 1/2) (arc cosω)) ϑ = 0, 1, 2, · · · , and recurrence relations
are given by,

Pϑ′′+1/2(ω) = 2ωP(ϑ′′−1/2)(ω)−P(ϑ′′−3/2)(ω), with P±1/2(ω) =
√

1+ω
2
, ϑ′′ ∈ N, see[14].

2.3. Cesàro means

An infinite series
∞∑
n=0

un is said to be summable to the sum s by Cesàro means

of an order one if,

tn =
∞∑
j=0

∞∑
k=0

αn,kuj where αn,k =

{
1

n+1
for 0 ≤ j ≤ k ≤ n,

0 for j ≥ k ≥ n.

=
k∑

j=0

∞∑
k=0

αn,kuj = lim
n→∞

n∑
k=0

1

n+ 1

k∑
j=0

uj = lim
n→∞

1

n+ 1

n∑
k=0

sk where sk =
k∑

j=0

uj

= s.
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This sum is denoted by symbolically
∞∑
n=0

un = s(C, 1), [2, 18].

Let
∞∑
n=0

∞∑
n′=0

un,n′ be a double infinite series (Bromwich[1], p.29) , is said to be

summable to the sum s by Cesàro means of an order one if,

tn,n′ =
∞∑
j=0

∞∑
k=0

∞∑
j′=0

∞∑
k′=0

α(n,n′;k,k′)u(j,j′)

whereα(n,n′;k,k′) =

{ 1
(n+1)(n′+1)

for 0 ≤ j ≤ k ≤ n, & 0 ≤ j′ ≤ k′ ≤ n′,

0 for j ≥ k ≥ n & j′ ≥ k′ ≥ n′.

=
k∑

j=0

∞∑
k=0

k′∑
j′=0

∞∑
k′=0

α(n,n′;k,k′)u(j,j′) = lim
(n,n′)→(∞,∞)

n∑
k=0

1

n+ 1

k∑
j=0

n′∑
k′=0

1

n′ + 1

k′∑
j′=0

u(j,j′)

= lim
(n,n′)→(∞,∞)

1

(n+ 1) (n′ + 1)

n∑
k=0

n′∑
k′=0

s(k.k′) where s(k,k′) =
k∑

j=0

k′∑
j′=0

u(j,j′)

= lim
(n,n′)→(∞,∞)

n∑
k=0

n′∑
k′=0

(
1− 1

(n+ 1)

)(
1− 1

(n′ + 1)

)
u(k.k′)

=s.

This sum is denoted by symbolically
∞∑
n=0

∞∑
n′=0

u(n,n′) = s(C, 1, 1).

Remark

(i) If
∞∑
n=0

un = s, then
∞∑
n=0

un = s(C, 1).

(ii) An infinite series
∞∑
n=0

(−1)n is not convergent but
∞∑
n=0

(−1)n = 1
2
(C, 1), see [18].

(iii) If
∞∑
n=0

∞∑
n′=0

un,n′ = s, then
∞∑
n=0

∞∑
n′=0

un,n′ = s(C, 1, 1).

(iv) An infinite series
∞∑
n=0

∞∑
n′=0

(−1)n+n′
is not convergent but

∞∑
n=0

∞∑
n′=0

(−1)n+n′
= 1

4
(C, 1, 1) see [11].
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2.4. Generalized Orthogonal Projection Operator
An orthogonal projection operator is a surjective map Φη : L

2
Ω → Vη defined by

(see [8])

Φη(f) =
∞∑

m=0

〈
f, Ψ(η,ϑ)

〉
wϱ

η
Ψ(η,ϑ), fixed η = 1, 2, 3, · · · 2ϱ−1, ϱ ∈ N.

The two dimensional orthogonal projection operator Φ(η,η′) : L
2
Ω2 → V(η,η′) is given

by

Φ(η,η′)(f) =
∞∑

ϑ′=0

∞∑
ϑ=0

α(ϑ;ϑ′)Ψ(ϑ;ϑ′),

fixed η = 1, 2, 3, · · · 2ϱ−1 η′ = 1, 2, 3, · · · 2ϱ′−1, ϱ, ϱ′ ∈ N,

=
∞∑
ϑ=0

∞∑
ϑ′=0

〈
f, Ψ(ϑ;ϑ′)

〉
w
(ϱ,ϱ′)
(η;η′)

Ψ(ϑ;ϑ′),

where α(ϑ,ϑ′) =

∫
R

∫
R

f(ω,ϖ)Ψϑ;ϑ′(ω,ϖ)w
(ϱ,ϱ′)
η;η′ (ω,ϖ)dωdϖ.

The generalized orthogonal operator by (C, 1, 1) method is denoted by ΦG
(η,η′)(f)

and given by

ΦG
(η,η′)(f) :=

n′∑
ϑ′=0

n∑
ϑ=0

(
1− 1

n+ 1

)(
1− 1

n′ + 1

)
α(ϑ;ϑ′)Ψ(ϑ;ϑ′),

=
n′∑

ϑ′=0

n∑
ϑ=0

(
1− 1

n+ 1

)(
1− 1

n′ + 1

)〈
f, Ψ(ϑ;ϑ′)

〉
w
(ϱ,ϱ′)
(η;η′)

Ψ(ϑ;ϑ′),

2.5. Two-Dimensional Pseudo-Chebyshev Wavelet Series
A function f ∈ L2

Ω2 (R) is expanded by two dimensional PCW series as [5, 6]:

f(ω,ϖ) =
∞∑
η=1

∞∑
ϑ=0

∞∑
η′=1

∞∑
ϑ′=0

α(η,ϑ;η′,ϑ′)ψ
(ω)
(η,ϑ)ψ

(ϖ)
(η′,ϑ′) (1)

where α(η,ϑ;η′,ϑ′) =

∫ ∫
f(ω,ϖ)ψ

(ω)
(η,ϑ)w

ϱ
η(ω)ψ

(ϖ)
(η′,ϑ′)w

ϱ′

η′(ϖ)dωdϖ.

.
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2.6. Function Approximation
A two dimensional real valued function f defined on Ω2 may be expanded

in terms of the two dimensional PCW series (1). If an infinite series (1) is approx-
imated by the generalized orthogonal projection operators ΦG

(η,η′)(f), then

f ≈ f0 =
2ϱ−1∑
η=1

℘−1∑
ϑ=0

2ϱ
′−1∑

η′=1

℘′−1∑
ϑ′=0

(
1− 1

n+ 1

)(
1− 1

n′ + 1

)〈
f, Ψ(ϑ;ϑ′)

〉
w
(ϱ,ϱ′)
(η;η′)

Ψ(ϑ;ϑ′)Ψη,ϑ;η′,ϑ′

= ⟨Υ,Ψ⟩ = ΥτΨ where Υτ indicates transpose of a matrix Υ,

where Υ and Ψ are 2ϱ−1℘2ϱ
′−1℘′ × 1 matrices and ⟨Υ,Ψ⟩ is an inner product of

column vectors Υ and Ψ (see[14]) .

2.7. Error of Wavelet Approximation
The error ζG(ℵ,℘)(f) of wavelet approximation of a function f by the generalized

orthogonal projection operators ΦG
(ℵ,℘)(f) is defined by

ζ(ℵ,℘)(f) = inf
ΦG

(ℵ,℘)
(f)
∥ΦG

(ℵ,℘) − f∥2 where ℵ = 2ϱ−1 <<∞, and ϱ ∈ N.

If error ζ(ℵ,℘) → 0 as ℵ → ∞ or ℘→ ∞ then ΦG
(ℵ,℘) (f) is called the best wavelet

approximation of a function f ∈ L2
Ω (R) (see[3, 20]).

The error ζ(ℵ,℘;ℵ′,℘′) of two dimensional PCW approximation of a function f ∈
L2
Ω2 (R) by the operators ΦG

(ℵ,℘;ℵ′,℘′) is given by

ζ(ℵ,℘;ℵ′,℘′) = inf
Φ

(G,f)

(ℵ,℘;ℵ′,℘′)

∥f − Φ
(G,f)
(ℵ,℘;ℵ′,℘′)∥2.

If error ζ(ℵ,℘;ℵ′,℘′) → 0 as ℵ,ℵ′ → ∞ or ℘, ℘′ → ∞ then ΦG
(ℵ,℘;ℵ′,℘′)(f) = f0 is

called the best wavelet approximation of a function f ∈ L2
Ω2 (R).

3. Main results

3.1. In this section, two new theorems have been established in the following forms:

Theorem 1. Let f ∈ H
(α,β)

Ω2 (R) be a function, and let its two-dimensional Pseudo-
Chebyshev wavelet series expansion be given by

f ∼
∞∑
η=1

∞∑
ϑ=0

∞∑
η′=1

∞∑
ϑ′=0

α(η,ϑ;η′,ϑ′)Ψ(η,ϑ;η′,ϑ′),

where the coefficients are defined by
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α(η,ϑ;η′,ϑ′) =

∫
Ω2

fΨ(η,ϑ;η′,ϑ′)w
ϱ,ϱ′

η,η′dµ.

Then the error ζ(ℵ,℘;ℵ′,℘′) in the two-dimensional Pseudo-Chebyshev wavelet (PCW)
approximation of the function f , using the generalized orthogonal projection oper-
ator ΦG

(η,η′)(f), is given by

ζ(ℵ,℘;ℵ′,℘′) = O

((
1− 1

℘+ 1

)(
1− 1

℘′ + 1

)(
1

ℵ(α+1)
+

1

ℵ′(β+1)

)
1√

(℘+ 1/2) (℘′ + 1/2)

)

Proof of Theorem 1. Since,

(ζ(ℵ,℘;ℵ′,℘′))
2 = inf

Φ
(G,f)

(ℵ,℘;ℵ′,℘′)

∥f − Φ
(G,f)
(ℵ,℘;ℵ′,℘′)∥

2
2,

= inf
Φ

(G,f)

(ℵ,℘;ℵ′,℘′)

∫
Ω2

∣∣∣f − Φ
(G,f)
(ℵ,℘;ℵ′,℘′)

∣∣∣2 dµ,
= inf

{℘,℘′}

(
1− 1

℘+ 1

)2(
1− 1

℘′ + 1

)2

,

×

∣∣∣∣∣
∣∣∣∣∣

ℵ∑
n=1

∞∑
m=℘

ℵ′∑
n′=1

∞∑
m′=℘′

ε(n,m;n′,m′)Ψ(n,m;n′,m′)

∣∣∣∣∣
∣∣∣∣∣
2

,

= inf
{℘,℘′}

(
1− 1

℘+ 1

)2(
1− 1

℘′ + 1

)2

,

×

〈
ℵ∑

n1=1

ℵ′∑
n′
1=1

∞∑
m1=℘

∞∑
m′

1=℘′

ε(n1,m1;n′
1,m

′
1)
Ψ,

ℵ∑
n2=1

ℵ′∑
n′
2=1

∞∑
m2=℘

∞∑
m′

2=℘′

ε(n2,m2;n′
2,m

′
2)
Ψ

〉
,

= inf
{℘,℘′}

ℵ∑
n1=1

ℵ′∑
n′
1=1

∞∑
m1=℘

∞∑
m′

1=℘′

ε(n1,m1;n′
1,m

′
1)

ℵ∑
n2=1

ℵ′∑
n′
2=1

∞∑
m2=℘

∞∑
m′

2=℘′

ε(n2,m2;n′
2,m

′
2)
,

×
(
1− 1

℘+ 1

)2(
1− 1

℘′ + 1

)2 〈
Ψ(n1,m1;n′

1,m
′
1)
,Ψ(n2,m2;n′

2,m
′
2)

〉
wϱ,ϱ′

η,η′

since
〈
Ψ(n1,m1;n′

1,m
′
1)
,Ψ(n2,m2;n′

2,m
′
2)

〉
wϱ,ϱ′

η,η′
= δ(n1,n2)δ(m1,m2)δ(n′

1,n
′
2)
δ(m′

1,m
′
2)
,

= inf
{℘,℘′}

(
1− 1

℘+ 1

)2(
1− 1

℘′ + 1

)2 ℵ∑
n=1

ℵ′∑
n′=1

∞∑
m=℘

∞∑
m′=℘′

∣∣ε(n,m;n′,m′)

∣∣2 .
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Now,

ε(n,m;n′,m′) =
〈
f,Ψ(n,m;n′,m′)

〉
wϱ,ϱ′

η,η′
=

∫
Ω2

fΨ(n,m;n′,m′)w
ϱ,ϱ′

η,η′dµ

=

∫
Ω

∫
Ω

f(x, y)Ψ(n,m;n′,m′)(x, y)w
ϱ,ϱ′

η,η′(x, y)dxdy

=

∫ η

2ϱ−1

η−1

2ϱ−1

∫ η′

2ϱ
′−1

η′−1

2ϱ
′−1

f(x, y)ψϱ
(η,ϑ)(x)w

ϱ
η(x)ψ

ϱ′

(η′,ϑ′)(y)w
ϱ′

η′(y)dxdy

ε(n,m;n′,m′) =

∫ η

2ϱ−1

η−1

2ϱ−1

∫ η′

2ϱ
′−1

η′−1

2ϱ
′−1

(
f(x, y)− f

(
2η − 1

2ϱ
,
2η′ − 1

2ϱ′

))
× ψϱ

(η,ϑ)(x)w
ϱ
η(x)ψ

ϱ′

(η′,ϑ′)(y)w
ϱ′

η′(y)dxdy

+

∫ η

2ϱ−1

η−1

2ϱ−1

∫ η′

2ϱ
′−1

η′−1

2ϱ
′−1

f

(
2η − 1

2ϱ
,
2η′ − 1

2ϱ′

)
ψϱ
(η,ϑ)(x)w

ϱ
η(x)ψ

ϱ′

(η′,ϑ′)(y)w
ϱ′

η′(y)dxdy

Next, f ∈ H
(α,β)

Ω2 R and using Lemma 2.3 in [6], we have∣∣ε(n,m;n′,m′)

∣∣ ≤
(
κ

(
1

2ϱα
+

1

ϱ′β

)
+

4κ0
2ϱ2ϱ′

)

×
∫ η

2ϱ−1

η−1

2ϱ−1

∫ η′

2ϱ
′−1

η′−1

2ϱ
′−1

ψϱ
(η,ϑ)(x)w

ϱ
η(x)ψ

ϱ′

(η′,ϑ′)(y)w
ϱ′

η′(y)dxdy

≤ 4

π
max {κ, 2κ0}

(
1

ℵ(α+1)
+

1

ℵ′(β+1)

)(
1

(m+ 1/2)(m′ + 1/2)

)
.

(
ζ(ℵ,℘;ℵ′,℘′)

)2 ≤ 16κ′2

π2

(
1− 1

℘+ 1

)2(
1− 1

℘′ + 1

)2( 1

ℵ(α+1)
+

1

ℵ′(β+1)

)2

×
∞∑

m=℘

∞∑
m′=℘′

(
1

(m+ 1/2)(m′ + 1/2)

)

=
16κ′2

π2

(
1− 1

℘+ 1

)2(
1− 1

℘′ + 1

)2( 1

ℵ(α+1)
+

1

ℵ′(β+1)

)2

× 1

(℘+ 1/2) (℘′ + 1/2)
where,κ′ = max {κ, 2κ0} see Lemma 2.2 in [6].

Therefore,

ζ(ℵ,℘;ℵ′,℘′) = O

((
1− 1

℘+ 1

)(
1− 1

℘′ + 1

)(
1

ℵ(α+1)
+

1

ℵ′(β+1)

)
1√

(℘+ 1/2) (℘′ + 1/2)

)
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Thus the establishment of Theorem 1 is now complete.

Theorem 2. Let f ∈ Hα
Ω (R) be a function, and let its Pseudo-Chebyshev wavelet

series expansion be given by

f ∼
∞∑
η=1

∞∑
ϑ=0

α(η,ϑ)Ψ(η,ϑ),

where the coefficients are defined by

α(η,ϑ) =

∫
Ω

fψ(η,ϑ)w
ϱ
ηdµ.

Then the error ζ(ℵ,℘) in the two-dimensional Pseudo-Chebyshev wavelet (PCW) ap-
proximation of the function f , using the generalized orthogonal projection operator
ΦG

η (f), is given by

ζ(ℵ,℘) = O

((
1− 1

℘+ 1

)
1

ℵ(α+1)

1

(℘+ 1/2)

)
Proof of Theorem 2. The proof of Theorem 2 follows similarly to that of Theorem
1, taking into account the function class f ∈ Hα

Ω(R) considered therein.

3.2. Corollaries
In this section, two new corollaries related to the Theorems 1 and 2, have been

established in the following forms:

Corollary 1. If f ∈ H
(α,β)

Ω2 (R) be a function, and let its two-dimensional
Pseudo-Chebyshev wavelet series expansion for ϱ = ϱ′ = 1, be given by f ∼
∞∑
ϑ=0

∞∑
ϑ′=0

α(ϑ,ϑ′)Ψ(ϑ,ϑ′), where the coefficients are defined by

α(ϑ,ϑ′) =

∫
Ω2

fΨ(ϑ,ϑ′)w
(1,1)
(1,1)dµ.

Then the error ζ
(1)
(℘,℘′) in the two-dimension, the Pseudo-Chebyshev wavelet (PCW)

approximation of the function f , using the generalized orthogonal projection oper-
ator ΦG

1 (f), is given by

ζ
(1)
(℘,℘′) = O

((
1− 1

℘+ 1

)(
1− 1

℘′ + 1

)(
1

2(α+1)
+

1

2(β+1)

)
1√

(℘+ 1/2) (℘′ + 1/2)

)
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Corollary 2. If f ∈ Hα
Ω (R) be a function, and let its Pseudo-Chebyshev wavelet

series expansion in dimension for ϱ = 1, is given by f ∼
∞∑
ϑ=0

αϑψϑ, where the

coefficients are defined by

αϑ =

∫
Ω

fψϑw
1
1dµ.

Then the error ζ
(1)
℘ in the one-dimension, Pseudo-Chebyshev wavelet (PCW) ap-

proximation of the function f , using the generalized orthogonal projection operator
ΦG

1 (f), is given by

ζ(1)℘ = O

((
1− 1

℘+ 1

)
1

2(α+1)

1

(℘+ 1/2)

)
4. Illustrative Example

Example 1. In this example, we calculate the approximation of a function

f(t) =

{
2t1/2 + 3t3/2 + 5t5/2 + 7t7/2; t ∈ Ω,
0; t /∈ Ω.

Table 1: Comparison of PCW and CW approximations for different orders

t 0.00 0.25 0.50 0.75 1.00
f 0 1.5859375 3.9774756442 8.6737856848 17.0

PCW f00 0 5.6015625 7.921805658 9.7021908518 11.203125
CW f00 -1.9927209383 -0.99636046913 0 0.99636046913 1.9927209383
PCW f10 0 0.9921875 4.6624853384 9.7021908518 15.8125
CW f10 -0.84404941826 -1.5706962291 -1.14867152 0.42202470913 3.1413924583
PCW f20 0 1.53125 3.90013584 8.7685072133 16.890625
CW f20 -1.0712510935 -1.3434945539 -1.14867152 0.1948230339 3.3685941335
PCW f30 0 1.5859375 3.9774756442 8.6737856848 17.0
CW f30 -1.079900473 -1.3391698642 -1.1573208995 0.19914772366 3.359944754
PCW f40 0 1.5859375 3.9774756442 8.6737856848 17.0
CW f40 -1.0914030504 -1.3449211528 -1.1573208995 0.20489901236 3.3714473314
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Figure 1: Graph of f and PCWf0 and CWf0 for different M

Table 2: Comparison of PCW and CW errors ζM for various M

t 0.00 0.25 0.50 0.75 1.00
PCWζ1 0 4.015625 3.9443300138 1.028405167 5.796875
CWζ1 1.9927209383 2.5822979691 3.9774756442 7.6774252156 15.007279062
PCWζ2 0 0.59375 0.68500969427 1.028405167 1.1875
CWζ2 0.84404941826 3.1566337291 5.1261471642 8.2517609757 13.858607542
PCWζ3 0 0.0546875 0.077339804192 0.094721528539 0.109375
CWζ3 1.0712510935 2.9294320539 5.1261471642 8.4789626509 13.631405866
PCWζ4 0 0 0 0 0
CWζ4 1.079900473 2.9251073642 5.1347965437 8.4746379611 13.640055246
PCWζ5 0 0 0 0 0
CWζ5 1.0914030504 2.9308586528 5.1347965437 8.4688866724 13.628552669
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Figure 2: Graph of error functions ζM

Example 2. In this example, we consider a function defined over two variables,
f .

f(t, u) =

{
2t1/2u3/2 + 3t3/2u1/2 + 5t5/2u7/2 + 7t7/2u5/2; (t, u) ∈ Ω2,
0; t /∈ Ω2.

Consider the Pseudo-Chebyshev series expansions of the function, for ϱ = ϱ′ ⇒
η = η′ = 1

f ∼
∞∑
ϑ=0

∞∑
ϑ′=0

α(ϑ;ϑ′)ψϑψϑ′

= 6.1666ψ0(t)ψ0(u) + 2.1376ψ0(t)ψ1(u) + 0.4564ψ0(t)ψ2(u) + 0.0383ψ0(t)ψ3(u)

+ 2.3876ψ1(t)ψ0(u) + 0.9664ψ1(t)ψ1(u) + 0.2470ψ1(t)ψ2(u) + 0.0192ψ1(t)ψ3(u)

+ 0.5100ψ2(t)ψ0(u) + 0.2684ψ2(t)ψ1(u) + 0.0644ψ2(t)ψ2(u) + 0.0038ψ2(t)ψ3(u)

+ 0.0537ψ3(t)ψ0(u) + 0.0268ψ3(t)ψ1(u) + 0.0054ψ3(t)ψ2(u) + 0ψ3(t)ψ3(u)

= f0,

where α(ϑ;ϑ′) =

∫
Ω2

fψϑw
1
1ψϑ′w1

1dµ =

1∫
t=0

1∫
u=0

f(t, u)ψ(t)w(2t− 1)ψ(u)w(2u− 1)dtdu, .
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Figure 3: Graph of f, f0, |f − f0| in 3D and f, f0 in 2D for M = 1

Figure 4: Graph of f, f0, |f − f0| in 3D and f, f0 in 2D for M = 2
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Figure 5: Graph of f, f0, |f − f0| in 3D and f, f0 in 2D for M = 3

Figure 6: Graph of f, f0, |f − f0| in 3D and f, f0 in 2D for M = 4
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5. Result Discussion and Conclusions

(i) Since, by Theorems 1 and 2, the errors satisfy

ζ(ℵ,℘;ℵ′,℘′) → 0 as (℘, or ℘′, or ℵ, or ℵ′) → ∞,

ζ(ℵ,℘) → 0 as (℘, or ℵ) → ∞.

Therefore, the results presented in Theorems 1 and 2 demonstrate that the
pseudo-Chebyshev wavelet approximations, based on the generalized orthog-
onal projection operators Φ(η,η′) and Φη respectively, provide highly accurate
representations and are optimal within the framework of wavelet analysis [20].
Furthermore, the numerical results reported in Table 1 and Figures 1, 3, 4, 5,
6 along with the absolute errors displayed in Table 2 and Figure 2, strongly
support the effectiveness of the proposed method.

(ii) In Example 2, by setting u = 1, the problem becomes analogous to that
presented in Example 2. This correspondence is evident upon examining the
solutions illustrated in Figures 1, 3, 4, 5, and 6.

(iii) Figures 1 and 2, together with Tables 1 and 2, clearly illustrate the compara-
tive advantages of the proposed pseudo-Chebyshev wavelets over the classical
Chebyshev wavelets in the context of the present examples. Specifically, the
graphical representations in Figures 1 and 2 show that the pseudo-Chebyshev
wavelets yield more accurate approximations to the target function, with
smoother convergence behavior and reduced oscillations near the boundaries.
Furthermore, the numerical results summarized in Tables 1 and 2 indicate
lower approximation errors and improved stability in the pseudo-Chebyshev
approach. These observations highlight the enhanced performance and suit-
ability of the pseudo-Chebyshev wavelets for solving the considered class of
problems.
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