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Abstract: In this article authors establish ten definite integrations for hypergeo-
metric functions in association with Bessel function. Several closely-related results
such as (for example) Generalized hypergeometric functions are also considered.
These results provide some extensions in the scientific literature.
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1. Introduction
The Bessel function of first kind of order n is defined as:

In(n) = S oFl(—;n-i-l;—n—Q) (1.1)
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We know following Ramanujan’s series [1, 3, 4] are as:
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Qureshi et al derived the following formulae [2]
1311 e
F <_7_;_7_717__) - 1
23\ 422 4 0 (1.6)
1311
F(——-——r—?):— 1
21473 47472727 , T ’]0<7T> ( 7)
1311 72 1 /7
F (_7_a_7_717__) = 3 <_> ]-
23\ 4722 9 5 Po\3 (1.8)

and
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2. Definite Integrals Associated with Hypergeometric Functions
In this section, we establish set of ten definite integrals associated with hyper-
geometric functions, as follows:

Theorem 2.1. Fach of the following assertion holds true:
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provided that each member of the assertions (2.1) to (2.10) exists.

Proofs. In this section, we provide proofs for the assertions (2.1) to (2.10), as
given below:
We first prove our assertion (2.1) as:

w2t
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Now using (1.6), we obtain:
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This completes our demonstration of the first assertion (2.1).
Next, we prove of second assertion (2.2), as
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Now applying (1.6), we obtain:
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This completes our demonstration of assertion (2.2).

Further, we prove assertion (2.3), as
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Now using (1.6), we have
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This completes our demonstration of assertion (2.3).
Further, we prove assertion (2.4), as
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Now using (1.7), we have:
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This completes our demonstration of assertion (2.4).
Further, we prove assertion (2.5), as
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Now applying (1.7), we obtain:
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This completes our demonstration of assertion (2.5).
Further, we prove assertion (2.6), as

/Loo+’y T2 F(zll — S) F(% - 5) P(S)
N e

3 = w20 (s) [T3y D(—s+az)
1\ /3 QUEpCE) 2 fese v
() 2
47 \4 [T T(ax)
1N\ /3 1311
2ur()r) ()
1)\ ey T

Now using (1.7), we have:
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This completes our demonstration of assertion (2.6).
Further, we prove assertion (2.7), as
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Now using (1.8), we have:

1 1_71’_2t

/0006 1F3<4’2’2” 9>dt—F<§>*1J0(E>_

Vit 4
This completes our demonstration of assertion (2.7).
Further, we prove assertion (2.8), as
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This completes our demonstration of assertion (2.8).
Further, we prove assertion (2.9), as
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This completes our demonstration of assertion (2.9).
Further, we prove assertion (2.10), as
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Now using (1.9), we obtain
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This completes our demonstration of assertion (2.10).
This obviously completes our proof of Theorem 2.1.

3. Conclusion

In our present investigation, we have made use of the constants, Gamma func-
tions, and Bessel functions as well as the hypergeometric and the generalized hy-
pergeometric functions with a view developing several definite integrals respec-
tively. The results derived in this article are believed to be new and would extend
and unify those that are available in the scientific literature.

Acknowledgement

This study was funded by the National Board of Higher Mathematics (NBHM)
of the Department of Atomic Energy (DAE) of the Government of India by its
sanction letter (Ref. No. 02011/12/2020 NBHM (R.P.)/R D II/7867) dated 19
October 2020.

References

[1] Bateman H. and Erdélyi A., Higher Transcendental Functions, Vol. 1. New
York, McGrawaHill, 1953.

[2] Chaudhary M. P., Certain Aspects of Special Functions and Integral Opera-
tors, LAMBERT Academic Publishing, Germany, 2014.

[3] Qureshi M. I., Khan I. H. and Chaudhary M. P., On certain hypergeometric
summation theorems motivated by the works of Ramanujan, Chudnovsky
and Borwein, Journal of Mathematics Research, 2 (2010), 196-202.

[4] Ramanujan S., Notebooks of Srinivasa Ramanujan, Vol. II, Tata Institute
of Fundamental Research, Bombay, 1957; Reprinted by Narosa, New Delhi,
1987.

[5] Srivastava H. M., Salahuddin and Chaudhary M. P., Some Definite Integrals
Involving Elliptic Integrals in Association with Hypergeometric Functions,
Filomat, 38(1), (2024), 3719-3730.

[6] Venkatachala B. J., Vinay V. and Yogananda C. S., Ramanujan’s papers,
Prism Books Pvt. Ltd., Bangalore and Mumbai, 2000.



