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Abstract: Integral transforms play a pivotal role in mathematical analysis and
have become a central tool in the study of special functions. Motivated by their
broad applicability, researchers have continually introduced new forms of these
transforms. In this paper, we explore a novel integral transform involving the prod-
uct of the Whittaker function Wy ,,,(2) and a generalized hypergeometric function.
The resulting integral is expressed in terms of the Srivastava triple hypergeometric
function. Furthermore, several noteworthy special cases of the proposed integral
transform are derived, highlighting its potential for broader applications in math-
ematical and applied contexts.
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1. Introduction

In recent years, numerous integral transforms involving variety of special func-
tions of mathematical physics have been established by many researchers (see for
recent work, [1]-[4], [6]-[8], [10]-[13], [17]). Such transforms play an important role
in many diverse fields of physics and engineering. Integral transforms involving
Whittaker function and generalized hypergeometric function play crucial role in
the problems of the various branches of physics and applied mathematics. Exist-
ing transforms involving Whittaker functions or hypergeometric functions usually
remain limited to one-variable cases. The derived transformations in this article
provide recurrence relations and reduction formulas connecting Whittaker-based in-
tegrals with classical functions. Due to the importance of such type of transforms,
in this paper, we present (presumably new) certain potentially useful integral trans-
forms involving Whittaker function and generalized hypergeometric function which
are expressed in terms of sum of Srivastava triple hypergeometric function.

Integral transforms have been successfully used for almost two centuries for
solving many problems in applied mathematics, mathematical physics and engi-
neering science. The origin of the integral transforms including the Laplace and
the Fourier transforms can be traced back to celebrate work of P.S. Laplace (1749-
1827) on probability theory in the 1780s and to monumental treatise of J. Fourier
(1768-1830) on La theorie Analytique de La Chaleur published in 1822. It may
be relevant to point out that the Laplace transform is essentially a special case of
Fourier transform for a class of functions defined on the positive real axis. One of
the oldest and most commonly used integral transforms available in the mathemat-
ical literature is Laplace transform, which has effectively been used in finding the
solution of the linear differential equations,integral equations, signal processing and
control theory. For example Fourier and Laplace transform simplify complex signal
and systems by converting the,m into different domains,making analysis easier for
tasks such as filtering, image compression and system stability evaluations. In sig-
nal processing they enable frequency domain analysis and future instructions. In
control system a transform differential equation into algebraic equations, facilitat-
ing the design and stability analysis of digital analogue controllers for application
like robotics and aerospace. In mathematics, an integral transform 7" of the follow-
ing form, where the input is a function f, and the output is the another function
T f. Mathematically

THU) = /:2 K(t,u) f(t)dt. (1.1)

1
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The function of two variables K is called the kernel of the transform.
In particular, the Laplace transform is the integral transform with kernel

K(z,e) = x(0,00)(x)e >, (1.2)

because the Kernel is only non-zero for positive x,,, or the Laplace transform of a
function f(t) is the function

LIfI(s) = / T (e, (1.3)

because the Kernel decays rapidly, the laplace transform makes sense for most
functions.

Several quadratic transforms of Gauss hypergeometric series o F; are found in
literature. Some of these are [16; p. 111 (6), (17) and (4)]:

. a, a—l—% ; ) 1\~ . 2a. 2a+% ; 3
2z — =(1—-=
21" . . =z ( 2Z> 241 L 9.
29 ; ) s
(1.4)
a, CL+% ; 2(1, C_% )
—2a 2\/z
2 F1 2l =0+ Vz) TR il A
c X 20—% : L+ vz
(1.5)

a, b ; 1\ @ 5 5 . \2
2F1 z = (1 — 52) QFl . <2_z) s (16)
26 3 ;

where we have used the standard hypergeometric series notation (see[14]):

- Ay, @2,...,0p; i(al)m”w(ap)n n
z =
p-q b17 b2’.“7bq; — (bl)n7"'7<bq>'ﬂ n'
:qu[al,ag,...,ap;bl,bg,...,bq;z], (17)

where (a), = (a + 1)(a +2)...(a +n — 1) and (a)y = 1 is called Pochhammer’s sym-
bol [15].
A general triple hypergeometric series F®)[z,y, 2] defined by Srivastava [16; p.

69] is
(a) = (h); (R); (R") = (9); (9)'; (9)" 5
F®) Ty, 2

(0) = () (f)5 £7) = (e); (e)5 (e)"
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o p=0 (b)m+n+p(f)m+n(f,)n-&-p(f”)m-&-p(e)m(el)n(eﬂ)p m! n! p!-

The Whitaker function of second kind Wy, ,(z) is defined as [18; p. 39 (24)] see
also ([2], [6])

i (@metntp(P)mtn (B )ntp(B)mip(9)m(g)n(g")p 2™ y" 27 (1.8)

Wiu(2) = 2 2exp (—%z) v (u —k+ %, 20+ 1; z) : (1.9)
Whitaker function has the following relations with other special functions
Wiaitinia(2) = (=1 nlel727) 2273 L2(2), (1.10)
where L%(z) is a Laguerre Polynomial [15].
Wiy, (2%) = (2) "2 V2H,(2), (1.11)
where H,(z) is a Hermite polynomial [15].

2
Wi (22) = ny(z), (1.12)
where K, (z) is the modified Bessel function of second kind [15].

2. Main Transformation
In order to obtain, the main transformation, we establish an integral of the
form

0o ai, a2, ...,ap AL, A2, e, Ay
/ t7 e Wy (B, Fy 22t | JF, — 2t | dt
0 b1,b2,....,b4 ; W1y 42y oy by 3

_ Bar(A) {F(A)

(z+2)4 LT(O)
A A41 . A A4, . . . . B B+1
3) PR o9 v Ty T -a’lva27"'aapa)\lv)\%"'v)‘ua 9 9
F
¢ C+1 .. . . . 1 .
29 9 : b17b27""7bq7,u17:u27"'7/1’1)7 2 )

1622 —16y? (22 — B)?
(22 +8)*" (22 +5)* (22 + 9)?
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. (22 - 5) BI(A + 1)

224+ 6) I(C+1)
- ALl 442 A?/, %; == 11, Aoy, G A e,y Ay B BE2
%,% - 201, ba, o bgs o, ey e S % ;
1622 —16y? (22 — B)? 2.1)
(22 +8)*" (224 8)>" 22+ 8)* | [’

WhereA:m—l—a—l—%,A’:a—m—i-%,B:m—k—i-%,Cza—k—i—l,Re(A) > 0,
Re(A") > 0 and Re(z + /2) > 0.

Proof. Denoting left hand side of (2.1) by I and expanding ,F, and , F), in series
and integrating term by term with the help of the result [3; p. 216 (16)] we get

o0

ey 2 (@000 AP a® (1)
LD D e (W S N (R RN 7R}

T(m+o+2r+2s+3)(c—m+2r+2s+1)
T(0 +2r + 25 — k + 1)(z + Bymtot2ri2stzy) g

m+0+2r+2s+%, m—k+35 ;

2, —
Xo b 22 & (2.2)
o+2r+2s—k+1 ; 2+p
Further expanding oF} in series and making use of (1.8) , we arrive at the result
(2.1).

3. Special Cases
(i). On taking z = g in (2.1), we get

o 5 ai,a2,...,ap ; AL A2, e Ay
/ t7 e 2 Wy, 1 (BE)p Fy 2262 | LF, —22 | dt
0

b1, b, ... by

; K1y {2y o5 by 5
_ BmRT(A) T(A)
B T(O)
éa%?%’a‘w;l L ar, G, ..., Qp; )\17)\27"'7)\u;

327 B2
7T+17_7_ : b17b27"'7bq' K1y 25 ooy fos B B
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where F'?) is the Kapmé de Fériet’s function [15].

(ii). On taking k = o+ 1 +n, m = 3o in (2.1) and making use of (1.10), we get

oo alaa23"'aap; A17>\27"'7)\u;
/ totia—te-(+30)t Lo gy F, 222 | JF, — 22| dt
0

bl,bg,...,bq; M1y 2y eny Moy

W) {F<A>

(—1)mnl(z + £)4 | T(O)
- é,% .. A?',AIQH; — = 1AL, A2, py AT, A2y ey Ay g, %;
¢ gl Dby boy o Doy s ey e s
162> —16y* (22 — B)? (2,2 - B) BT'(A+1)
(224 B)? (22 + B)? (224 B)? 2+ I'C+1)
@ AL A A AL Gy, A e Gy A Mgy s Ay B BE2
%,% = 201,09, o, bgs oy 2y ey o % ;
1622 —16y? (22 — B)? ' (3.2)
(224 8)*" (22 + B)*" (22 + B)?

(iii). On taking k = %1 +n,m= % in (2.1) and making use of (1.11), we get

%s) 3 ) A1, A2, ..., Ap; )‘1a)‘2,"'7)\u;
/ =3 =G+ (/) F, 222 | L F, — 22| at
0

bl?bQ?"'?7bq; M1y 2y ey My

_ 2"Bi(4)) {r<A>

(z+ g)A IN(®)
%7# * %laA/;l;_;_ :alaa2a"'aap;)\la)‘Qa"'a)\u; gv %7 161’2
F® —
2z + )2’
%,% : 2b1, b2, b o1, 2y e o % ; ( 5

—16y? (22 — B)? +(22—6) BT(A+1)
(224 B)?" (22 + B)? 2z+03) I'(C+1)
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F(3) %7 % - A?/a A’2+1; - T a17a27"'aa'p;)\17/\27"-7>\u; %a %a
OHl G2 F b1, boy oo bgs i, oy oo} S ;
1622 —16y* (22 — B)? (3.3)
22+ 8)* 22+ 6)*" 22+ 8)?| [ '

(iv). On taking k = 0,m = v in (2.1) and making use of (1.12), we get

0o . Bt a1,02,...;ap )‘17)\27"'7>\u 5
/ "2 MK, ( 5 ) o Fy 2 | L F, —y*t? | dt
0 b17b27‘ 5

..,bq 3 1y 2y eeey By 5
T (1
= +3p7 \TO
3) éa% = %/714,;1;_;_ :a17a27"‘7ap;A17)\27"‘7Au; %7 %7 16(E2
i Ct1 1 (22 + B)*’
Sy Ty i 1b1,b2, 0y Og; 15 2, s foy 5 ;
—16y* (22 — B)? N <2z - 5) BT(A+1)
(22 +B)?" (22 + B)? 22+ 6) T(C+1)
3) %7% i %/aA/;—l; - T a17a27"'aap;)\17)‘27"'7>\u; %a %a
F
%7% - :b17b27"'7bv;,u17,u27"’nuq; % )
1622 —16y? (22 — B3)? (3.4)
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(v). On takingp=u=1,g=v=2,a1 = 1,b; =

7b2 :67A1 - ]-7/1“1 = %7”2 = K,
in (2.1), using the following results [14; p.595 (11)

and [14; p. 608 (13)]

—Nolw

™
IFQ(a; blu b2; Z) = %F(b)zl/2_b[1b_3/2(2z)

™
1Fy(a; by, by; —27) = \/7_F<b)zl/2be_3/2(2Z)

with a = 1,b; = 3/2,by = b , the transformation becomes

TR (o) / {7 W (B0 Ls_y (20 H, s (291) dt
0



130 J. of Ramanujan Society of Mathematics and Mathematical Sciences

m+1 ’ e — -1 1. —. B Bl
_B 21;(A){F§A;F(3) 2 2020 T T g T
Z+ 2)A F C c C ] )
( 7) E,TH %,5,%,,u, % :
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(vi). On taking k =m + 3 in (2.1), we get

[ ap, a2, ..., Ap; )‘17)‘27"'7)\11;
/ e W1 (B Fy 222 | L F, — 2% | dt
0

blaan"'abq; 1y 12y ey Moy
_ BmRT(A) T(A)
(z+5)" 1)
F(3) é’A21 i %7#5_7_ 2 a1, a2, ..., Qp; )\la)\Qa“vAu; 16[)32
’ ’ 2 + 2’
%’% " :bl?b27"'7bq; By 2y e Mo ( : B)
(22 + B)*" (22 + B)? '

(vii). On taking p =u =1,¢ = v =2 in (2.1) we reduces to a well known result
by W. A. Khan, N. U. Khan and M. Kamarujjama [9].

(viii). On taking p = 0,¢ = 1,u = 1 and v = 2 and having suitable parametric
arrangements as by = 1 + v, the transformation (2.1) reduces to

oo )\1; - v m-‘r%F A/> F(A)
t7 e Wy (B, (2at) 1 Fy 22| dt = — b ( {
/0 P T(v+1)(z+2)4 L T(C)
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A+1 .. A A1,
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where I, is the modified Bessel function of 1st kind [14], which is a known result
of B. Khan and M. A. Pathan [5].

(ix). Ontakingp =¢=u=v=1,a = A\ =aand by = 3 = b in (2.1) and
using Ramanujan’s Theorem [15; p. 106 (5)]

the transformation reduces to

> b—a, — zith BmEAT(A) [ T(A)
ta—le—thk (Bt)QFS < a, b ) b ) ) dt = {
/0 m b, L 4l 4 (z+ 54 \T(0)
) 0 S s R B I I T o 1622 —1622 (22— B)2
¢ ca1 S (224 8)>" (224 B)*" (22 + B)?
27 2 h ba ba 2 ’
2z — B\ BI'(A+1)
2:+5) T(C+1)
A+l At2 .. AT A+l . . 4. 4. Bl B+2.
F(3) 2 v 9 PREVEE ) : ) ) 2 2 161’2 —16.’E2
C+1 C+2 .. . b: b 3 . (2z +5)2’ (22 +6)2’
2 0 2 . ’ ’ 2 )
2z+8)%| [’

where o F3 is the generalized hypergeometric series given in (1.7).
(x). On takingp=u=0,g=v=2,by =3 =a, by =ps =b, x =y in (2.1) and
using the result [15; p. 106 (7)], we get
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> —-1),% 3 ;o =27
/ t7 e Wi i (Bt)3 Fy ( a,b 1),3(a+0b),5(a+b+1) ’ . ) dt
0

+b a
+3,5 04+ ta+b-1),3(a+b) ; 64

_ T {F(A)

(z—l—g)A IN(®)!
A A+l Al A4 _._ _._ _. B Bt1. )
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where 3Fy is the generalized hypergeometric series given in (1.7).

4. Conclusion

In this paper, we have developed a new class of integral transforms involving the
product of the Whittaker function and two generalized hypergeometric functions.
These integrals were expressed in terms of finite sums of the Srivastava triple hyper-
geometric function, thereby yielding results of broad generality. Since Whittaker
and generalized hypergeometric functions encompass many classical functions, the
derived transforms provide a unified framework that subsumes and extends nu-
merous known integral formulas. By suitable parameter choices, the results reduce
to identities involving Laguerre and Hermite polynomials, the confluent hypergeo-
metric function, and the Fox H-function, among others. This highlights both the
flexibility and the unifying power of the obtained formulas. From the applications
perspective, the findings enrich the theory of integral transforms in mathematical
analysis, provide computational tools for problems in mathematical physics such as
quantum mechanics and wave propagation, and offer potential applications in engi-
neering models governed by special functions and fractional operators. Overall, this
work not only generalizes existing results but also lays the foundation for further
exploration of integral transforms associated with multivariable special functions
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and their applications across mathematics and the applied sciences. An interesting
future direction would be to express the Whittaker function in terms of the Beta
function and its matrix analogues. Developing such Beta or Beta-matrix represen-
tations of Whittaker functions could open new avenues for studying matrix-valued
special functions, fractional operators, and applications in mathematical physics.
For instance, in quantum mechanics, the radial Schrodinger equation for a par-
ticle in a Coulomb potential has solutions in terms of Whittaker functions. By
expressing these solutions through Beta or Beta-matrix representations, one can
derive new integral forms and recurrence relations that may simplify the analysis
of bound states and scattering problems.
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