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for idempotency and give some examples.

Keywords and Phrases: Ring, power-associative, idempotent.

2020 Mathematics Subject Classification: Primary 17A01, 17C27, Secondary
20H25, 15A30.

1. Introduction
In this article we provide a necessary and sufficient condition for idempotency

in power-associative rings, hence extending Mosic’s result in [5]. Mosic gives the
relation between idempotent and tripotent elements in an associative ring R, gen-
eralizing the result on matrices by Trenkler and Baksalary [8]. Namely, for any x ∈
R, where 2, 3 are invertible, x is idempotent if and only if x is tripotent and 1− x

is tripotent or 1+ x is invertible.
In [1], we pointed out that even though O/Zp

1,2 is not associative, the result
does hold in some cases. For example, consider the tripotent x = 4+3e1+e2+4e3
in O/Z7, which is also an idempotent. It is not hard to check this directly or using
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the conditions for idempotency in Theorem 3.1 in [1]. We noticed also that 1 − x

is tripotent and 1+ x is invertible as N(1+ x) =
√
2 ̸= 0. Similar things hold also

for x = 4 + e1 + 3e3 + 4e5, which is non-quaternionic (it is octonionic). So, given
the above, we conjectured that Mosic’s result may extend to some non-associative
rings. As a matter of fact, it is true for general power-associative rings and hence
to any associative, alternative and flexible ring.3

2. Extension to Power Associative Rings
In this section, we prove Mosic’s result for general power-associative rings.

Theorem 1. Let x ∈ R where R is a power-associative ring and 2, 3 ∈ R−1. Then,
x is idempotent if and only if x is tripotent and any of the following two conditions
hold: (i) 1− x tripotent or (ii) 1+ x ∈ R−1 .

Proof. Let x be idempotent, so x2 = x. Then, x3
pow.assoc.

= x2x = xx = x2 = x.
Hence, x is tripotent. In addition:

(1− x)3 = (1− x)(1− x)(1− x)
pow.assoc.

= [(1− x)(1− x)](1− x)

= (1− x− x+ x2)(1− x)

= (1− x− x+ x)(1− x)

= (1− x)(1− x)

= 1− x− x+ x2

= 1− x− x+ x

= 1− x

So, 1− x is tripotent. Also, (1+ x)(2− x) = 2− x+ 2x− x2 = 2− x+ 2x− x = 2.
And since 2 ∈ R−1, then 1 + x is right-invertible. Similarly, (2 − x)(1 + x) =
2+2x−x−x2 = 2+2x−x−x = 2. And since 2 ∈ R−1, 1+x is also left-invertible.
Therefore, 1+ x is invertible. So, (i) and (ii) hold.
Conversely, let x be tripotent, i.e. x3 = x, and suppose (i) or (ii) holds.
Case 1: x tripotent and (i) holds. We have x3 = x and (1− x)3 = 1− x. Then:

(1− x)3 = (1− x) =⇒ (1− x)(1− x)(1− x) = 1− x
pow.assoc.
=⇒ [(1− x)(1− x)](1− x) = 1− x

=⇒ (1− x− x+ x2)(1− x) = 1− x

=⇒ (1− 2x+ x2)(1− x) = 1− x
pow.assoc.
=⇒ 1− 3x+ 3x2 − x3 = 1− x

=⇒ 1− 3x+ 3x2 − x = 1− x
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=⇒ −3x+ 3x2 = 0

=⇒ 3x2 = 3x

And since 3 ∈ R−1 we have that x2 = x. Hence, x is idempotent.
Case 2: x tripotent and (ii) holds. We have x3 = x and 1+ x invertible. Then:

(1+ x)x2
pow.assoc.

= x2 + x3 = x2 + x = x+ x2
pow.assoc.

= (1+ x)x

And since 1+ x ∈ R−1 we have that x2 = x. Hence, x is idempotent.

Both cases, (1) and (2), imply that x is idempotent. So, x is idempotent.

3. Examples

1. The finite ring O/Z7 is alternative (non-associative) and therefore our theorem
in Section 2 applies. We have already considered in Section 1 two elements in O/Z7,
namely x = 4+ 3e1 + e2 + 4e3 and x = 4+ e1 + 3e3 + 4e5, for which the theorem is
true. These examples were mentioned in [1], and we noted already that the second
example was non-quaternionic (it is octonionic). We provide one more octonionic
element. Consider x = 4+ e1 + e2 + e3 + e4 + e5 in O/Z7. Then, x is idempotent,

because x2 = 11+ 8e1 + 8e2 + 8e3 + 8e4 + 8e5
mod7
= 4+ e1 + e2 + e3 + e4 + e5. It is

also tripotent and 1+ x is invertible as N(1+ x) =
√
2 ̸= 0. Notice also that 1− x

is tripotent, as 1−x = −3−e1−e2−e3−e4−e5
mod7
= 4+6e1+6e2+6e3+6e4+6e5

and (1− x)3 = −2096− 792e1− 792e2− 792e3− 792e4− 792e5
mod7
= 4+ 6e1+ 6e2+

6e3 + 6e4 + 6e5 = 1− x.

2. It is important to note that all Cayley-Dickson algebras of dimension greater
than 8 are non-alternative with zero divisors, also flexible (see [6]), and in par-
ticular power-associative. So, our theorem holds for all Cayley-Dickson algebras.
For example, it holds for the flexible (non-alternative) Cayley-Dickson algebra of
sedenions S, which is constructed by applying the Cayley-Dickson process on octo-
nions [3]. More specifically, consider x = 2− e2+ e14 in the finite ring S/Z3. Then,
x is idempotent. It is also tripotent and 1 + x is invertible (its inverse is itself).

Notice also that 1− x is tripotent, as 1− x = −1+ e2 − e14
mod3
= 2+ e2 + 2e14 and

(1− x)3 = −22+ 7e2 + 14e14
mod3
= 2+ e2 + 2e14 = 1− x.

3. Jordan Algebras are all power-associative and in general of non-Cayley-Dickson
type. Hence our theorem applies. For example, consider the non-alternative Jor-
dan algebra Jn(C) of self-adjoint nxn complex matrices, with the Jordan product

A ◦ B = AB+BA
2

.4 The element X =

(
1/2 i/2

−i/2 1/2

)
is idempotent, as X2 = X ◦ X =
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XX+XX
2

= XX =

(
1/2 i/2

−i/2 1/2

) (
1/2 i/2

−i/2 1/2

)
=

(
1/2 i/2

−i/2 1/2

)
= X. So, X is

therefore tripotent and 1+X is invertible with inverse (1+X)−1 =

(
3/4 −i/4

i/4 3/4

)
.

Finally, notice that I − X is also tripotent as I − X = X̄ (the conjugate of X) and
(I− X)3 = (X̄)3 = (X3) = (X) = X̄ = I− X.

Notes
1. O is the octonions, one of the only four finite dimensional normed division al-
gebras. O/Zp is the finite ring of octonions with coefficients from Zp.
2. The multiplication in O is given by the Fano Plane (Figure 1) or the Multipli-
cation Table (Figure 2) below (see [3]), which is the multiplication table for the
sedenions S and includes the multiplication tables for the division algebras R,H
and O. (set ei = i for simplicity, i=1,2,...,15).

Figure 1: Fano Plane

Figure 2: Multiplication Table
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3. A magma is a set equipped with a binary operation ⋆ that is closed under ⋆.
A magma is said to be power-associative if the subalgebra generated by any of its
elements is associative. Concretely, this means that if an element x operates via
⋆ with itself several times, it does not matter in which order the operations are
carried out. So, for instance, x ⋆ (x ⋆ (x ⋆ x)) = (x ⋆ (x ⋆ x)) ⋆ x = (x ⋆ x) ⋆ (x ⋆ x). It
is immediate then, by their defining relations, that the associative, alternative and
flexible algebras are also power-associative algebras
4. Jn(C) is isomorphic to the spin algebra R3 ⊕ R and hence is of non Cayley
Dickson type. For more see [4].
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