

## CHARACTERIZATION OF IDEMPOTENCY IN POWER-ASSOCIATIVE RINGS

**M. Aristidou and G. Chailos\***

American University of Cyprus  
Larnaca, CYPRUS

E-mail : michael.aristidou@aucy.ac.cy

\*Department of Computer Science,  
University of Nicosia, CYPRUS

E-mail : chailos.g@unic.ac.cy

(Received: Jul. 06, 2025 Accepted: Dec. 01, 2025 Published: Dec. 30, 2025)

**Abstract:** In this paper, we extend Mosic's result for idempotency in associative rings to power-associative rings. We provide a necessary and sufficient condition for idempotency and give some examples.

**Keywords and Phrases:** Ring, power-associative, idempotent.

**2020 Mathematics Subject Classification:** Primary 17A01, 17C27, Secondary 20H25, 15A30.

### 1. Introduction

In this article we provide a necessary and sufficient condition for idempotency in power-associative rings, hence extending Mosic's result in [5]. Mosic gives the relation between idempotent and tripotent elements in an associative ring  $R$ , generalizing the result on matrices by Trenkler and Baksalary [8]. Namely, for any  $x \in R$ , where  $2, 3$  are invertible,  $x$  is idempotent if and only if  $x$  is tripotent and  $1 - x$  is tripotent or  $1 + x$  is invertible.

In [1], we pointed out that even though  $\mathbb{O}/\mathbb{Z}_p^{1,2}$  is not associative, the result does hold in some cases. For example, consider the tripotent  $x = 4 + 3e_1 + e_2 + 4e_3$  in  $\mathbb{O}/\mathbb{Z}_7$ , which is also an idempotent. It is not hard to check this directly or using

the conditions for idempotency in Theorem 3.1 in [1]. We noticed also that  $1 - x$  is tripotent and  $1 + x$  is invertible as  $N(1 + x) = \sqrt{2} \neq 0$ . Similar things hold also for  $x = 4 + e_1 + 3e_3 + 4e_5$ , which is non-quaternionic (it is octonionic). So, given the above, we conjectured that Mosic's result may extend to some non-associative rings. As a matter of fact, it is true for general power-associative rings and hence to any associative, alternative and flexible ring.<sup>3</sup>

## 2. Extension to Power Associative Rings

In this section, we prove Mosic's result for general power-associative rings.

**Theorem 1.** *Let  $x \in R$  where  $R$  is a power-associative ring and  $2, 3 \in R^{-1}$ . Then,  $x$  is idempotent if and only if  $x$  is tripotent and any of the following two conditions hold: (i)  $1 - x$  tripotent or (ii)  $1 + x \in R^{-1}$ .*

**Proof.** Let  $x$  be idempotent, so  $x^2 = x$ . Then,  $x^3 \stackrel{\text{pow.assoc.}}{=} x^2x = xx = x^2 = x$ . Hence,  $x$  is tripotent. In addition:

$$\begin{aligned} (1 - x)^3 &= (1 - x)(1 - x)(1 - x) \stackrel{\text{pow.assoc.}}{=} [(1 - x)(1 - x)](1 - x) \\ &= (1 - x - x + x^2)(1 - x) \\ &= (1 - x - x + x)(1 - x) \\ &= (1 - x)(1 - x) \\ &= 1 - x - x + x^2 \\ &= 1 - x - x + x \\ &= 1 - x \end{aligned}$$

So,  $1 - x$  is tripotent. Also,  $(1 + x)(2 - x) = 2 - x + 2x - x^2 = 2 - x + 2x - x = 2$ . And since  $2 \in R^{-1}$ , then  $1 + x$  is right-invertible. Similarly,  $(2 - x)(1 + x) = 2 + 2x - x - x^2 = 2 + 2x - x - x = 2$ . And since  $2 \in R^{-1}$ ,  $1 + x$  is also left-invertible. Therefore,  $1 + x$  is invertible. So, (i) and (ii) hold.

Conversely, let  $x$  be tripotent, i.e.  $x^3 = x$ , and suppose (i) or (ii) holds.

**Case 1:**  $x$  tripotent and (i) holds. We have  $x^3 = x$  and  $(1 - x)^3 = 1 - x$ . Then:

$$\begin{aligned} (1 - x)^3 = (1 - x) &\implies (1 - x)(1 - x)(1 - x) = 1 - x \\ &\stackrel{\text{pow.assoc.}}{\implies} [(1 - x)(1 - x)](1 - x) = 1 - x \\ &\implies (1 - x - x + x^2)(1 - x) = 1 - x \\ &\implies (1 - 2x + x^2)(1 - x) = 1 - x \\ &\stackrel{\text{pow.assoc.}}{\implies} 1 - 3x + 3x^2 - x^3 = 1 - x \\ &\implies 1 - 3x + 3x^2 - x = 1 - x \end{aligned}$$

$$\begin{aligned} &\implies -3x + 3x^2 = 0 \\ &\implies 3x^2 = 3x \end{aligned}$$

And since  $3 \in R^{-1}$  we have that  $x^2 = x$ . Hence,  $x$  is idempotent.

**Case 2:**  $x$  tripotent and (ii) holds. We have  $x^3 = x$  and  $1 + x$  invertible. Then:

$$(1 + x)x^2 \stackrel{\text{pow.assoc.}}{=} x^2 + x^3 = x^2 + x = x + x^2 \stackrel{\text{pow.assoc.}}{=} (1 + x)x$$

And since  $1 + x \in R^{-1}$  we have that  $x^2 = x$ . Hence,  $x$  is idempotent.

Both cases, (1) and (2), imply that  $x$  is idempotent. So,  $x$  is idempotent.

### 3. Examples

1. The finite ring  $\mathbb{O}/\mathbb{Z}_7$  is alternative (non-associative) and therefore our theorem in Section 2 applies. We have already considered in Section 1 two elements in  $\mathbb{O}/\mathbb{Z}_7$ , namely  $x = 4 + 3e_1 + e_2 + 4e_3$  and  $x = 4 + e_1 + 3e_3 + 4e_5$ , for which the theorem is true. These examples were mentioned in [1], and we noted already that the second example was non-quaternionic (it is octonionic). We provide one more octonionic element. Consider  $x = 4 + e_1 + e_2 + e_3 + e_4 + e_5$  in  $\mathbb{O}/\mathbb{Z}_7$ . Then,  $x$  is idempotent, because  $x^2 = 11 + 8e_1 + 8e_2 + 8e_3 + 8e_4 + 8e_5 \stackrel{\text{mod}7}{=} 4 + e_1 + e_2 + e_3 + e_4 + e_5$ . It is also tripotent and  $1 + x$  is invertible as  $N(1 + x) = \sqrt{2} \neq 0$ . Notice also that  $1 - x$  is tripotent, as  $1 - x = -3 - e_1 - e_2 - e_3 - e_4 - e_5 \stackrel{\text{mod}7}{=} 4 + 6e_1 + 6e_2 + 6e_3 + 6e_4 + 6e_5$  and  $(1 - x)^3 = -2096 - 792e_1 - 792e_2 - 792e_3 - 792e_4 - 792e_5 \stackrel{\text{mod}7}{=} 4 + 6e_1 + 6e_2 + 6e_3 + 6e_4 + 6e_5 = 1 - x$ .

2. It is important to note that all Cayley-Dickson algebras of dimension greater than 8 are non-alternative with zero divisors, also flexible (see [6]), and in particular power-associative. So, our theorem holds for all Cayley-Dickson algebras. For example, it holds for the flexible (non-alternative) Cayley-Dickson algebra of sedenions  $\mathbb{S}$ , which is constructed by applying the Cayley-Dickson process on octonions [3]. More specifically, consider  $x = 2 - e_2 + e_{14}$  in the finite ring  $\mathbb{S}/\mathbb{Z}_3$ . Then,  $x$  is idempotent. It is also tripotent and  $1 + x$  is invertible (its inverse is itself). Notice also that  $1 - x$  is tripotent, as  $1 - x = -1 + e_2 - e_{14} \stackrel{\text{mod}3}{=} 2 + e_2 + 2e_{14}$  and  $(1 - x)^3 = -22 + 7e_2 + 14e_{14} \stackrel{\text{mod}3}{=} 2 + e_2 + 2e_{14} = 1 - x$ .

3. Jordan Algebras are all power-associative and in general of non-Cayley-Dickson type. Hence our theorem applies. For example, consider the non-alternative Jordan algebra  $\mathbb{J}_n(\mathbb{C})$  of self-adjoint  $n \times n$  complex matrices, with the Jordan product  $A \circ B = \frac{AB+BA}{2}$ .<sup>4</sup> The element  $X = \begin{pmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{pmatrix}$  is idempotent, as  $X^2 = X \circ X =$

$\frac{XX+XX}{2} = XX = \begin{pmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{pmatrix} = X$ . So,  $X$  is therefore tripotent and  $1+X$  is invertible with inverse  $(1+X)^{-1} = \begin{pmatrix} 3/4 & -i/4 \\ i/4 & 3/4 \end{pmatrix}$ . Finally, notice that  $I-X$  is also tripotent as  $I-X = \bar{X}$  (the conjugate of  $X$ ) and  $(I-X)^3 = (\bar{X})^3 = \overline{(X^3)} = \overline{(X)} = \bar{X} = I-X$ .

## Notes

1.  $\mathbb{O}$  is the octonions, one of the only four finite dimensional normed division algebras.  $\mathbb{O}/\mathbb{Z}_p$  is the finite ring of octonions with coefficients from  $\mathbb{Z}_p$ .
2. The multiplication in  $\mathbb{O}$  is given by the Fano Plane (Figure 1) or the Multiplication Table (Figure 2) below (see [3]), which is the multiplication table for the sedenions  $\mathbb{S}$  and includes the multiplication tables for the division algebras  $\mathbb{R}, \mathbb{H}$  and  $\mathbb{O}$ . (set  $e_i = i$  for simplicity,  $i=1,2,\dots,15$ ).

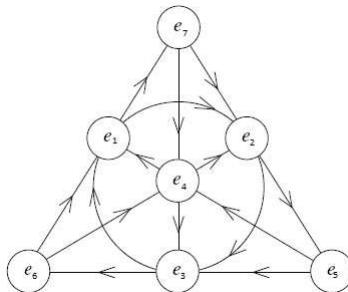


Figure 1: Fano Plane

| *        | 0  | 1      | 2       | 3       | 4       | 5 | 6      | 7     | 8      | 9      | 10  | 11  | 12 | 13 | 14 | 15 |
|----------|----|--------|---------|---------|---------|---|--------|-------|--------|--------|-----|-----|----|----|----|----|
| <b>C</b> | 0  | 1      | 2       | 3       | 4       | 5 | 6      | 7     | 8      | 9      | 10  | 11  | 12 | 13 | 14 | 15 |
| <b>C</b> | 1  | 1 -0   | 3 -2    | 5 -4    | 7 -6    | 6 | 9 -8   | -11   | 10 -13 | 12     | 15  | -14 |    |    |    |    |
| <b>H</b> | 2  | 2 -3   | -0 1    | 6 7     | -4 -5   | - | 10 11  | -8    | -9 -14 | -15    | 12  | 13  |    |    |    |    |
| <b>H</b> | 3  | 3 2    | -1 -0   | 7 -6    | 5 -4    | - | 11 -10 | 9     | -8 -15 | 14 -13 | 12  |     |    |    |    |    |
| <b>H</b> | 4  | 4 -5   | -6 -7   | -0 1    | 2 3     | - | 12 13  | 14    | 15 -8  | -9 -10 | -11 |     |    |    |    |    |
| <b>H</b> | 5  | 5 4    | -7 6    | -1 -0   | -3 2    | - | 13 -12 | 15    | -14 9  | -8 11  | -10 |     |    |    |    |    |
| <b>H</b> | 6  | 6 7    | 4 -5    | -2 3    | -0 -1   | - | 14 -15 | -12   | 13 10  | -11 -8 | 9   |     |    |    |    |    |
| <b>H</b> | 7  | 7 -6   | 5 4     | -3 -2   | 1 -0    | - | 15 14  | -13   | -12 11 | 10     | -9  | -8  |    |    |    |    |
| <b>O</b> | 8  | 8 -9   | -10 -11 | -12 -13 | -14 -15 | - | 0 1    | 2     | 3 4    | 5 6    | 7   |     |    |    |    |    |
| <b>O</b> | 9  | 9 8    | -11 10  | -13 12  | -15 -14 | - | -1 0   | -3    | 2 -5   | 4 7    | -6  |     |    |    |    |    |
| <b>O</b> | 10 | 10 11  | 8 -9    | -14 -15 | 12 13   | - | -2 3   | -0 1  | -6 -7  | 4 5    |     |     |    |    |    |    |
| <b>O</b> | 11 | 11 -10 | 9 8     | -15 14  | -13 12  | - | -3 2   | 1 0   | -7 6   | -5 4   |     |     |    |    |    |    |
| <b>O</b> | 12 | 12 13  | 14 15   | 8 -9    | -10 -11 | - | -4 5   | 6 7   | -0 1   | -2 -3  |     |     |    |    |    |    |
| <b>O</b> | 13 | 13 -12 | 15 -14  | 9 8     | 11 -10  | - | -5 4   | 7 -6  | 1 0    | 3 -2   |     |     |    |    |    |    |
| <b>O</b> | 14 | 14 -15 | -12 13  | 10 -11  | 8 9     | - | -6 7   | -4 5  | 2 -3   | -0 1   |     |     |    |    |    |    |
| <b>O</b> | 15 | 15 14  | -13 -12 | 11 10   | -9 8    | - | -7 6   | -5 -4 | 3 2    | -1 -0  |     |     |    |    |    |    |

Figure 2: Multiplication Table

3. A magma is a set equipped with a binary operation  $\star$  that is closed under  $\star$ . A magma is said to be power-associative if the subalgebra generated by any of its elements is associative. Concretely, this means that if an element  $x$  operates via  $\star$  with itself several times, it does not matter in which order the operations are carried out. So, for instance,  $x \star (x \star (x \star x)) = (x \star (x \star x)) \star x = (x \star x) \star (x \star x)$ . It is immediate then, by their defining relations, that the associative, alternative and flexible algebras are also power-associative algebras
4.  $\mathbb{J}_n(\mathbb{C})$  is isomorphic to the spin algebra  $\mathbb{R}^3 \oplus \mathbb{R}$  and hence is of non Cayley Dickson type. For more see [4].

### References

- [1] Aristidou M., Brown P. R. and Chailos G., Idempotent and Nilpotent Elements in Octonion Rings over  $\mathbb{Z}_p$ , Stud. Univ. Babes-Bolyai Math, 69(1) (2024), 3-14.
- [2] Baez J. C., The Octonions, Bull. Amer. Math. Soc., 39 (2002), 145-205.
- [3] Cawagas R. E., On the Structure and Zero Divisors of the Cayley-Dickson Sedenion Algebra, Discus. Math., Gen. Algebra Appl., 24 (2004), 251-265.
- [4] Jordan P., Neumann J. Von, Wigner E., On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics, 35(1), (1934), 29–64.
- [5] Mosic D., Characterizations of k-potent Elements in Rings, Ann. Mat. Pure Appl., 194(4) (2015), 1157-1168.
- [6] Schafer R., On Algebras formed by Cayley-Dickson Process, Amer. J. Math, (1954), 435-446.
- [7] Schafer R., An Introduction to Nonassociative Algebras, Academic Press, 1996.
- [8] Trenkler G. and Baksalary O. M., On k-potent Matrices, Electron J. Linear Algebra, 26 (2013), 446-470.

This page intentionally left blank.