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Abstract: Motivated by a recent work on Marichev-Saigo-Maeda fractional cal-
culus operators associated with the generalized k-Struve function(Seema Kabra et
al. [19] in Applied Mathematics and Nonlinear Sciences, 5(2),593-602), this paper
establishes four theorem by using Marichev -Maeda-Saigo fractional integral and
derivative operators involving the product of the (p,q)-Extended Bessel function
and Generalized k-Struve function, supported by serveral auxillary lemmas. The
results are expressed in terms of the ,.;Fs.r and generalized k-Wright function
r@ZJSk. Some new and known results are also obtained in special cases of main re-
sults.
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1. Introduction

Fractional calculus is a branch of mathematics deals with various differential
and integral operators. Fractional calculus operators are studied extensively due to
their importance in applied problems of science and engineering. For our present
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study, we recall the generalized hypergeometric fractional integrals, introduced by
Marichev [26], including the Saigo operators ([36], [37], [38]), and which were later
on extended by Saigo and Maeda [39]. The Marichev-Saigo-Meada fractional cal-
culus operator involving the product of some special functions defined thus.

Maricchev-Saigo-Maeda Fractional Calculus Operators: Saigo [36] defined
the fractional integral and differential operators with the Gauss hyergeometric func-
tion as kernel, which are remarkable generalizations of the Riemann-Liouville (R-L)
and Erdélyi-Kober fractional calculus operators [23]. Marichev [26] was introduced
and studied fractional calculus operators which are the generalization of the Saigo
operators, later generalized by Saigo and Maeda [39].

The some important definitions are defined by Singh, G. et. al [41] in the following
manner as :

Definition 1. Let (,¢',6,0,7 € C and 2 > 0, then, for R(5) > 0,

/ /7_ x—C z 1 ’ / t €
(15520 77) (x>=m/0 (v —t) ¢ Fy (C,C,5,5;T;1—5,1—;) f(t)dt
(1.1)
and
—¢ 00
¢ 5.8 _r- o1, ' Tt
(15557 f) (@) F(T)/m (t— )t F3<<,¢,5,5,T,1 -1 x)f(t)dt

(1.2)
where the function f(t) is so constrained that the integrals in (1.1)and (1.2) exist.

Let the M.S.M. type fractional integral operator be denoted by I g;gl"s"sl 7 f(z), where
subscripts (a, z) indicate the integration limits and superscripts carry the operator
parameters.

The above fractional integral operator in Eq.(1.1) and (1.2) can be written as
follows:

s d\" ) >
(o) @ = (5) () @ (13)
and
/ / d k /66l k k
(o) = () (1825 hesty) o) (1.4)

where

(R(7) <0k = [-R(7) +1]).
Proposition 1. F3(.) denoted by the Appell’s hypergeometric function in two
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variables [22] defined as:

F3 <<’ §’75’ 5’;7_;,&’1}) _ Z (C)m(c )n(é)m(é )n%v

(0)m-+n n_?’(max{‘uva} <1).

m,n=0

(1.5)

Remark 1. The Appell function defined in Eq. (1.5) reduces to the Gauss hyper-
geometric function oF| as given in following relations:

F3 (Ca T, _Cla 577— - 5a T, U, /U> = 2F1 (C? 67 —T;U + v, —UU) (16)
also we have
F3 <C7075a 6,,T;U,U> = 2F1 (C,(S,T,U) (17)
and
F3 (0,</,6,5/,T;U7U> :2F1 <C/75/;T;U) (18)

Definition 2. Let ¢,(',6,6',7 € C and z > 0, then

(D2 71) @) = (1§ =¢. =8 =8, =) (@)

k ’
= (4) (8 =68 =+ ko= + k) (5 R() > 00k = [R(r) + 1)
1 d\" @ .
“re () <[ e
XF3 (_CI7_<7 _6l7k_67k_7—71_£71_%) f(t)dt (19)

(D7) (@) = (L =C. =0 =8, =7f ) (@)

(15 =€ =8, =8+ k=7 + kf ) (2): (R(7) > 05k = [R(7) + 1)

1 d\"* @ e
“r ()
XR<—¢—Q—&k—&k—ﬂ1—%ﬁ—£>ﬂﬂﬁ (1.10)

In view of the above reduction formula as given Eq.(1.7),the The general fractional
calculus operators reduces to the Saigo operator defined as follows [36].
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Definition 3. For x > 0,(,5,8,7 € C and R(¢) > 0,then

(5557F) (@) = ?éf / (@t LR (c 6,1 g) fde (1)

and

(IS0 f) () = ﬁ/:o(t—x)gltg%pl <C+5, -7 1 — %) f)dt  (1.12)

Proposition 2. ,F(((,d;7; 2) denoted by the Gauss hypergeometric function [23]
defined for u € C, |u| < 1.

Fi(¢,0; In —n 1.1
21( TU nZ:O Tn oy ( 3)

Definition 4. Let (,0,7 € C and © > 0, then

(Dé,’fff) (z) = (1&5”‘5’“7) (z) = (%)k (1(;35*’“*5*’“»4“* f) () (L14)

and

k
(DA F) (2) = (L& f) (x) = (—%) (I Shmdelta=kCr ) () (1.15)

where

(R(C) > 0; &k = [R(¢) +1])

and R(C)is the integer part of R(().

If we take 0 = 0 in Eqgs.(1.11), (1.12), (1.14) and (1.15) we get the so-called Erdely-
Kober fractional integral and derivative give definite of Erdely-Kober operators
defined as follows (]24], [27]).

Generalized k-Struve function
The generalized k-Struve function defined by Nisar et al. [29] in the following
manner:

o

) ¢ 2n+2 41
— +. ) 1
ZFk nk—i—v Tk)r(n—i- )(2> (k’E%,ceﬂ,v> )

n=

(1.16)



Fractional Calculus Operators Associated with the Product of (p,q) ... 147

where the generalized k-Struve function Sff}c(t) convergence for all complex values
of t for details by Nisar et.al [30].

Proposition 3. The k-Gamma function defined by Daiz and Pariguan [11] in the
following manner:

Te(z) = /00 tz_le_%dt, 2e€C,k>0 (1.17)
Proposition 4. If z € C and k DG R,then the following identity is true
De(z + k) = 2T%(2) (1.18)
and
Ty(2) = ki~'T (%) (1.19)

Remark 2. If we taking k — 1 and ¢ = 1 in (1.16) reduces to well-known Struve
function of order v defined by [5] as

S (_1)7“ 2\ 2r+u+1
Hy(z) = (—) 1.20

(2) ;F(r—l—v%—g)F(r—i—%) 2 ( )
For further details about Struve functions,their generalizations and its properties,
the esteemed reader is invited to consider references ([6, 17, 21, 31, 32, 42, 46, 51)).
Also Diaz et al. ([12], [13]) introduced the k-gamma function, k-beta function and
Pochhammer k-symbols.

(p,q) - Extended Bessel function
The (p, q)-extended Bessel function J, , ,(z) of the first kind of order v is defined
as follows [18].

> (—1)"B( m+- v+ ,p,q) z\2mty
N _ 2 (_) 1.21

m:(]
where min {R(p), R(q)} > 0 and R(r) > —1 when p = ¢ = 0.

Proposition 5. The (p, q)-extended Beta function defined by Choi et al.[10] in the
following manner as:

q

1
Bluvipg)= [ (1 gyttt (1.22)
0

(min{R(u), R(v)} > 0;min {R(p), R(¢)} > 0)
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It should be remarked here that the existing literature on the subject contains
much more general extensions of the classical Beta function,especially in the case
when p = ¢ ([25], [43]).

For p = ¢ = 1, the (p, ¢)-extended Bessel function of the first kind J,, ,(2) and the
(p, q)-extended Beta function B(x,y; p.q) reduces Bessel function J,(z) of the first
kind and the classical Beta function B(x,y) , respectively.

(p,q) - extended Gauss hypergeometric function

The (p,q)-extended Gauss hypergeometric function F),, is defined as follows
[10]:

= B(v+n,w —wv;p,q) 2"
Fpg(u, v;w; 2) = E (U)n Blv,w—0v) ] (1.23)
n=0 ) :

where |z| < 1 and R(w) > R(v) >0

(p,q) -extended Generalized hypergeometric function
The (p, q)-extended generalized hypergeometric functions. We defined in the
series from as

k
al,.. CLT,A,L . Ak, > T +n C Ajap7 )
rtkstk 687017"'7 ks =P ’q:| n>0 ]-_[] 1 j=1 AJ7C —4; ) n'

(1.24)
The special case of the defining series (1.24) when e.g. k =r =s+1 = 1; and a
fortiori a; = a, A} = b, C; = ¢ becomes the already known (p, ¢)-extended Gausian
hypergeometric function ([1, 7, 8, 9, 10, 34, 35]).

Fox-Wright function
An interesting generalized hypergeometric function of one variable [44] and
further generalization of the series , F; were given by Fox [15] and Wright ([48-50]):

(ah i)l,r;
el) = { (bis Di)1,s5 x}

(a1, Ch), (az, Co), ..., (ar, Cy);
SRR R

)

)

II._, I(a; + nC;) 2"
ZH] 1 D(b; —l—nD)n_ re

= I'(a; +nC)T(ag +nCy)...I(a, + nC,) z"
e F(bl + nDl)F(bg + an)P(bq =+ an) n! ’

eC (1.25)
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The generalized from of the above Wright function (1.25) was given by Gehlot and
Prajapati [16], named as generalized K-Wright function which is defined as

k k| (@i Gy
s (T) =5 { (bi, D)1.s }
Lt [ (a1, Ch), (ag, Cy), ..., (ar, Cy); .
"L (b, Da), (ba, Da), .oy (s, Ds);

Z [T T(a; +nC;) «™
H] 1Fk b +nD)

B Z I(ar + nCi)l(az + nCy)..Ik(ar + nCy) "
0 Fk(bl + nD1>Fk(b2 + an)Fk(bx + nDs) n! ’

rxeC

reC (1.26)

Extended Wright Generalized hypergeometric function
The extended Wright generalized hypergeometric function defined by Sharma
and Deci [40] in the following manner as:

(ms, Mi)1pe, (n+1); | 1 [T—, T(m; + kM;)By, (n + k, 7 — )xk
S [ (ni; NoJa,s (7, 1); x’p] N E [Tj=1 T(ng +kN) !
(1.27)

(§R(7‘) > R(n) > 0,R(p) > 0;r,s € C; My, N; e R ;i =1,...,7,7 =1, ..s)
Some Required Lemma
The required lemmas defined by Saigo, M. [36] in the following manner as:

Lemma 1. Let (,(,6,6 , 7, € C,x > 0 be such that R(t) > 0; then the following
formulas hold true:

58 e T (A+7—(=(C =0T (A+d () e
(IM v 1)(””)_P(A+5')F(A+T—g—g’)F(AJrT—g’—5)‘7’”M -
(m@)>quaw(¢+¢+5—{ym(¢—5>g.

(1.28)

and

(,g,gé,a,y;tH) (2) _Ta-x-9rq —/\—T—l-C-l-/C/)I:(l —A—7+(+0)
’ TA-MNT(1-A=7+C+C+)T(A-A+¢—96)
XM (1.29)

(éR()\) < 1+mm{9'—e(—5),3fe(c+g’—7> ,%(c+5’—7)})
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Lemma 2. Let ¢, ¢, 8,8 ,7,A € C,z > 0 be such that R(1) > 0; then the following
formulas hold true:
(Dc,cﬁa,&’,ftx_l) (2) =M T A=7+C+C +8)T(A=6+0)
0. TA=O)TAN=7+C+)TA=7+(+0)
xgh TR (1.30)

(éR()\) > maz{0, R (T (- 5’) R (6 — C)}) .
and
(Dg,g’o,a,a’,ftAq) (x):F(l_)‘+5/)F(1_)“FT—C—/C/)F(l_/H‘TI—C//—5)
: T NT(- A 7—C—C —)T(1=—A—C+9)
s AT -1 (1.31)

<8‘E()\) < 1+mm{m(5’) ,&e(r—ﬁc’) ,&e(r—c’—a)}>

2. Main Results

In this section, the following for four theorem involving the product of (p, q)-
Extended Bessel function and Generalized k-Struve function using by Marichev-
Saigo- Maeda fractional integral and derivative operators are established here as
main results.

Theorem 1. Let ¢, ,6,8 T, LneCandk >0 be such that R(7) > 0, R(u) >
0,R() > maz{0,R(¢ —0), R+ +6 —1)}.Also let ¢ € R;v > —1,then for

t > 0.

QC’ 55/ 11~k C C,+7’+“+ 1 +1 1 y-}—%_}_l
I 6 50,0 ,T |:tﬁ7 S t Jl/ tlu' ]) _ T—(— +t% Ny kT 1 L
( 0,z v7c< ) 7107(1( ) (33') x —F(V n 1) 2 (2>

1 2H
2 .
1F2{%’V+1 47]9761}><
(v+n+k+2umk + pvk, 2k),
(v4+n+k+71k—Ck—Ck— 6k + 2umk + pvk, 2k),

(v 414k +2umk + pvk +6'k — 'k, 2k), (1,1) 2ok
sF (v 41+ k + 2umk + pvk + 6 k, 2k), —
(v4+n+k+71k —Ck —Ck+2umk + pvk, 2k),

(v 41+ k+2umk + pwk + 7k — 'k — 5k, 2k),
(’U_f—%uk)a(%?k) ;
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Proof. We denotes the left-hand sides of theorem (1) by Ay,

Ay = (I8 [ESE (6] ) (@) (2:2)

Using formula (1.16) and (1.21) in the right -hand side of Eq.(2.2) then change the
order of the Integration and summation,we find that

A= VT i(_l)mB(mﬂL%’VﬂL%;p,q) (1)2m+”

Tv+1) &=  mlm+1iBr+1) \2

2
00 (—C)n 1 2n+%+1
;Fk (nk+v+3%)T (n+3) <§>

(Ié,f 88T |:tg—1+%+2m,u,+,ul/+2n+1—1]) () (2.3)

On applying lemma (1.28) in Eq.(2.3),we get

v+7+1
Ay :x/“’JF%JF%*T*C*C, (1) ’ —ﬁ
I'(

2 v+1)

s DmB(m+ 1, v+ 3:p,q) a2\
XZ m!T m+1B(1/+ 2) 4
m=0

(—c)" cx?\"
XZFk (nk+v+ %) (n+3) (_T)

F(g Yy2mpt 4 2n+1+7—C¢—¢ —9)
F(ﬂ+ +2mp+pr+2n+14+7—¢ =)
F(Z+2+42mp+p+2n+1+6 —()
(24 242mpu+pv+2n+14+7—, —9)
D(Z+242mp+pv+2n+140 —()
F( + 7 +2mu+,uu+2n+1+7—(—(5)
Now using Eq.(1.19) in (2.4) ,we get

Novy— 1 (1 gt 1
Ay = gt roaces (2 .
2

= (=1)"B(m+ 3,v+ 3;p,q) a2\
XZ m!l m—i—lB(V—i— 2) 4
m=0

X

(2.4)

y = —c)" <_ck:m2)"
I nk+v+3k)F(n+%) 4

n=

=]
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Uy (n+v+2mpk + pvk + 2nk + k)
Ce (n+ v+ 2mpk + pvk 4+ 2nk + k + 6'k)
Ty (n+ v+ 2mpk + pvk + 2nk + k + 7k — Ck — 'k — 6k)
Ly (n+ v+ 2mpk + pvk + 2nk + k 4+ 7k — Ck — (k)
Ty, (n+ v+ 2mpuk + pvk + 2nk + k + 6 'k — k)
Ty (n+ v+ 2mpk + uvk + 2nk + k + 7k — 'k — 0k)
Now using Eq.(1.24) in Eq.(2.5) ,then we get

(2.5)

. , 1 v+i+1 1 1 22
A, = gl it gtm—¢=C =20+ [ L <  F _ T
1= 5 F(V n 1) 1472 +1 D, q

= (—c)" <_ck::1:2)n
X;Fk(nk+v+%)l“(n+%) 4

Uy (n+ v+ 2mpk + pvk + 2nk + k)
Ty (n+ v+ 2mpk + uvk + 2nk + k + §'k) (2.6)
Ty (n+ v+ 2mpuk + pvk + 2nk + k + 7k — Ck — 'k — 6k)

Ly (n+ v+ 2mpk + pvk + 2nk + k + 7k — Ck — (k)

Ty (n+ v+ 2mpk + pvk + 2nk + k + 6 k — (k)
Uy (n+v+2mpk + pvk + 2nk + k+ 7k — 'k — 0k)

Using the definition of (1.26) in (2.6),we at once arrive at the desired result.

Theorem 2. Let C,(’,é,é’,ﬂ%,u eCand k > 0,k € 3?+,\%| < 1 be such that
R(T) > 0, R(1) > 0,R(2) < 1+ min{R(—6),R(C+¢ —7),R(C+5 —7)}. Also
let c € R;v > —1,then fort >0

Y 1 . R 1\ Vit
<]§:go)§,5 ,T |:tz_185’c<t>Jy’p’q(t_M):|> (x) — T k' k kT—i-% <_)

I'(v+1) 2
i 1
1 { L —41:—2“;19,4 8
[ (2umk + uvk —n —v — ok, —2k), ]
(2umk + vk —v —n — 7k + Ck + 'k, —2k),
(2umk + pvk —n —v — 7k + Ck + 6k, —2k), (1,1) ; 2ok
JF (2umk + vk —v —n, —2k), - (2.7)
(Qumk + jwk — v — 1 — 7k + Ck + C'k + 8'k, —2k), 4
(2umk + pvk — v —n+ Ck — 0k, —2k)
L 7(U+%7k)7(%’k> ) i
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Proof. We denotes the left-hand sides of theorem (2) by Ag,
oo n 1
R 28)

Using formula (1.16) and (1.21) in the right -hand side of Eq.(2.8) then change the
order of the Integration and summation,we find that

VT i (=D)"B(m+3,v+3p.9) <1>2m+”

9 =

(v +1) 2= mil(m+ $)B(G,v+3) 2
S (=o)"
X
;Fk (nk+v+3%)T (n+3)
1 2n+7+1 . .
y (5) % (Ié:go,a,(s ,T |:tE+572m,uf,ul/+2n+171:|) () (2.9)

On applying lemma (1.29) in Eq.(2.9),we get
v+2+1
Ay R AT E Y (1) ’ —<ﬁ
r

2 v+1)
Xi B(m+3,v+1p.q) (—1)’”
m:Om'(%) I'(m+ )B(%,V—i—%) 42H
Xi 1 (—cx2>nf(—g Y 2mp+ pv — 2n — 0)
= Fk(nk+v+%)F(n+%) 4 F(—g—% 2m,u+,uv—2n)
y F(—%—%+2mu+py—2n—T+C+C/)
P(-F—242mp+uw —2n—7+C+( +6)
XF(—%—%—i—Qm,u—l—,uV—Qn—T—i-C—i-é')

2.10
I'(=%—%+2mp+pv—2n+¢—9) (2.10)

Now using Eq.(1.19) in (2.10) ,we get
v+i+1
AQ :,QT—IJ‘V—F%—F%J'_T_C_C/ kT+% 1 * ﬁ
2 I(v+1)

3 e ()

M8 3\*‘

1 (—cm%)n
=0 nk+v+3k)F;€(nk+%) 4
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Uy (= — v+ 2mpuk + pvk — 2nk — ok)
Ly (—n — v+ 2mpk + pvk — 2nk)
Ty (=0 — v+ 2mpk + pvk — 2nk —Tk—i—CkZ-f—C,k‘)
XFk(—n—v+2ka+uyk—2nk;—7'k+§k+§'k:+5’k)
Ty (—n — v+ 2mpk + pvk — 2nk — 7k + Ck + 6 k)
Iy (—=n — v+ 2mpk + uvk — 2nk + Ck — ok)

Now using Eq.(1.24) in Eq.(2.11), then we get

v+2+1
Ay ZQS_W—’_%"'%"H_C_C/]{:H_% 1 ) —1 X 1Fy % - _1 D g
2 ['(v+1) A2

= L'(n+1) —cx2k>n
XZFk (nk‘+v+%)f‘k(nk+%)n! ( 4

n=0
Ly (= — v+ 2mpk + pvk — 2nk — ok)
Tk (—n — v+ 2muk + prk — 2nk)
Ty, (—n — v+ 2mpk + pvk — 2nk — 7k + Ck + (k)
" Tr (=i — v + 2mpk + pvk — 2nk — 7k + Ck + Ck + 0'k)
Ty, (=1 — v + 2muk + pvk — 2nk — 7k + Ck + 6 k)
Uy (= — v+ 2mpk + pvk — 2nk + Ck — 0k)

(2.12)

Using the definition of (1.26) in (2.12),we at once arrive at the desired result.
Theorem 3. Let (,(,6,8 T, L,n € Candk > 0 be such that R(7) > 0,R(p) >

0,R(¢) > max{0,R(-(+6),N (—C ) +7‘)}. Also let ¢ € ®R;v > —1,then
fort>0

2

Y G T S 1\ Vit
(D55 5 [t4188 01 palt)]) (0) = Tk ()
y 5 v

2
— —P,q| X

1
) [ 2 1

%,1/4—1
(v+n+k+2umk + pvk, 2k),

(V4+n+k—71hk+Ck+Ck+0k+2umk + pvk, 2k),

(v+n+k+2umk + pvk — 6k + Ck, 2k), (1,1) D2
sF (v+n+k+2umk + pvk — 6k, 2k) —
S+ k= 1k 4 Ck+ k4 2umk + vk, 2k),
(v+n+k+2umk + puvk — vk + Ck + §'k, 2k),

(U+ %,k),(%,k) ;

(2.13)
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Proof. We denotes the left-hand sides of theorem (3) by As,
Ay = (DES AT [1SE (6) ()] ) (2) (2.14)

Using formula (1.16) and (1.21) in the right -hand side of Eq.(2.14) then change
the order of the Integration and summation,we find that

S S e ) (1Y
3 " T(v+1) = mIl'(m+ DB, v+ 1) 2
S (=o)"
X
;%Fk (nk#—v—i—%)f‘(n—i—%)
1 2n+%+1 ’ ’ n v
y (5) y (ngg 88 7 |:tE+E+2mu+p«l/+2n+1fli|> () (2.15)

On applying lemma (1.30) in Eq.(2.15),we get

v+7+1 0 ) m
Ag —ghv+i v it (1) z V3 Z Bm+1Liv+1ipq) <—x2“>
I(

2 v+1) &= mll(m+3)B(z,v+3) \ 4

. i Ty (nk+v+13k) I'(n+3) <_Zx2)n

i 2mutpr+2n+1—7+(+¢ +0)
(P4 2+2mp+pv+2n+1—7+C+()
y D(Z+242mpu+pv+2n+1—0+()
D(F4+2+2mp+pv+2n+1—7+(+7)

(2.16)

Now using Eq.(1.19) in (2.16), we get

v+7+1
Ay = givtiriorierd perry (LR v L
2 I(v+1) m

XZ m+2’y+27p7 ) —x2 "
(27V+ ) 4

y Z 1 (—c:v2k:>n
o I'; (nk—l—v+%)Fk (nk—i—%) 4
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Uy (n+ v+ 2mpk + pvk + 2nk + k)

% Ue (n+ v+ 2mpk + pvk + 2nk + k — 6k)
Iy (n+v+2muk3+,ul/k—|—2nkz—|—k—Tk—l—Ck:-l—C,k—i—élk)
Ty (n+v+2mpk + pvk + 2nk + k — 7k + Ck + ('k)
y Ly (n+ v+ 2muk + pvk + 2nk + k — 6k + Ck) (2.17)
Te (n+v+2mpk + uvk + 2nk + k — 7k + Ck + 0'k)
Now using Eq.(1.24) in Eq.(2.17) ,then we get
, v+i+1 1 2u
Ay =gPV T ETETHCR LT3 (%) F(y1—|— 5 x 1 Fy [ %,u§+ L %;p, q}
y i L(n+1) (—cx2k)n
—~ T (nk—i—v—i—%)f‘k (nk#—%)n! 4
Ui (n+ v+ 2mpk + pvk + 2nk + k)
Ly (n+v+2mpk + pvk + 2nk + k — 0k)
Ty (n+v+2mpk + pvk +2nk + k — 7k + Ck + Ck + 6'k)
x Ly (n+ v+ 2muk + pvk + 2nk + k — 7k + Ck + (k)
Ty (n+ v+ 2muk + pvk + 2nk + k — 6k + Ck) (2.18)

Ty (n+v+2mpk + pvk + 2nk + k — 7k + Ck — 0'k)

Using the definition of (1.26) in (2.18),we at once arrive at the desired result.

Theorem 4. Let C,CI,(S,(S/,T,%,,U € Cand k > 0,k € R, |3 < 1 be such that
R(T) > 0,R(1) > 0,R(2) < 1L+ min{R(©),R(r—¢—¢).R(r—¢ —6)}. Also
let c € R;v > —1,then fort >0

Yy 1 T 1\ Vit
(D5 |6 580 ()] ) ) = i (3)

e T(v+1) 2
1 1
2 _
1F2 |: %,V‘i_ 1 4x2M7PJQ:|

(2pmbk + pvk — 1 — v+ 8k, —2k)
, (Qumk + pwk — v —n + 7k — Ck — ('k, —2k),
(2umk + vk —n —v + 1k — 'k — 6k, —2k), (1,1) ;
4¢§ (2umk + uvk —v —n, —2k), —
(2umk + pvk —v —n+ 7k — Ck — 'k — 6k, —2k),
(2umk + pvk —v —n — 'k + 0k, —2k),
(v+ 5. k), (5 F) ;

(2.19)
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Proof. We denotes the left-hand sides of theorem (2) by Ay,

A - (Dgzg;’“'ﬁ {tl—lsf,c<t>Ju,p,q<i>]) (2) (2.20)

tH

Using formula (1.16) and (1.21) in the right -hand side of Eq.(2.20) then change
the order of the Integration and summation, we find that

B io: ~1)mB(m+ 1, v+3:p.q) (1 amety
T T(v m!T(m + 2 )B(% +3) \2

m:0

- (=o)"
erk (nk+v+3)T (n+3)

1 2n+7+1 ,
X (5) X (DC,C 0,0 ,T t%—&-%—?mp pr+2n+1— 1]) (.T) (221)

On applying lemma (1.31) in Eq.(2.21),we get

v+241 [ee] 1 1. m
A4 = ‘/L‘7/‘V+%+%7T+C+C, <1> § \/E Z B(m + 2° v + E’p’ q) < _1 )
Py +1)

2 v+1) ~=m m!($)mI(m+ 2B, v+ 1) \ 4o
Xf: 1 (_C$2)nx (%—k+2mu+uy—2n—|—5/)
nZOFk(nkij—l—%)F(n—l—g) 4 F( %—I—Qmﬂ—i—,ul/—Qn)
D(—=2—242mp+puv—2n+7—(—()
X
D(-%—2+2mp+pv—2n+7—-¢—( —9)
XI‘(—%—%+2m,u—|—,uy—2n—|—7—<’/—5)
D(—2—2+2mp+pv—2n+¢ +9)
(2.22)

Now using Eq.(1.19) in (2.22), we get
v+7+1
A, = gt rporrerd ey (L) VT
2 I'(v+1)

=2 e ()

T
i 1 <—cx2k>n
k(nk + v+ ZE)0p(nk + 2) 4

=0
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Iy, (—77 — v+ 2mpk + pvk — 2nk + (5'/{)
[y (= — v+ 2mpk + pvk — 2nk)
[y (—n—v—l—Qmuk—i—uuk—2nk—|—7k—(’k—§/k)

Ty (=1 — v+ 2mpk + puvk — 2nk + 7k — Ck — 'k — 0k) (2.23)
Iy (—77 — v+ 2mpuk + pvk — 2nk + 7k — 'k — 5kz)
Ly (—n — v+ 2muk + pvk — 2nk — 'k + §'k)
Now using Eq.(1.24) in Eq.(2.23) ,then we get
) vHE+1 1 B
Ay = g PR TG oy (%) ) —F(Vl—l— 1)1F2 { %7 1/5—}— 1 M_Qlﬂ;pa 4
- 1 —cx?k\"
8 ;Fk(nk—kv—l—%)l“k(nkjL%) < 4 )
Iy (—77 — v+ 2mpuk + prvk — 2nk + 6’!{:)
Ty (= — v+ 2mpk + pvk — 2nk)
u(—n — v+ 2muk + pvk — 2nk + 7k — Ck — (k)
Ce(—=n — v+ 2mpk + pvk — 2nk + 7k — Ck — ('k — k)
Ty, (—n — v + 2mpk + pvk — 2nk + 7k — 'k — k)
Ty (—=n — v+ 2mpk + uvk — 2nk — 'k + 8'k)
(2.24)

Using the definition of (1.26) in (2.24),we at once arrive at the desired result.
3. Application

Corollary 1. If we put k = 1 and ¢ = 1 in Theorem 1, then it reduces to the
following Struve function of order v, so we get the following results:

(16557 [ Ho(0) ()] ) ()

oT=C—C Hntvtpy g\ ViUt 1 T
= - F 2 _t
e () Pl

(v+n+1+2um+ uv,2),
(v4+n+147—C=C =8+ 2um+ v, 2),
(v+n+1+2um+w+0 —¢,2),(L1) 5 5
A (v 415+ 1+ 2um+ pv+4,2), -
(W+n+1+7—C—C +2um+ v, 2),
(v+n+14+2um+puw+7—C —6,2),

(v+35.1),(51)

(3.1)
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Corollary 2. If we put k = 1 and ¢ = 1 in Theorem 2, then it reduces to the
following Struve function of order v, so we get the following results:

’ /7_ n_ 1
(1525 [ 1.0 ()] ) @

xT—C—QI-HH-v—;UJ 1 v+o+l 1 1
= 5 D I el 2K
F(v+1) 2 Vv +1] 4o
(2Nm+NV—77—U—5a—2)a(2ﬂm+w/—“—77—7"“(“‘{/7_2),
2um+py —n—v—7+C+6,-2),(1,1) ;  alc
ats ) _re
2um +pv —v—n,-2), 2um +p —v —n -7+ ¢+ ¢ +8,-2), 4

(Qﬂm+MV—U—77+C—5a—2)a(U+371)7(371) )
(3.2)
Corollary 3. If we put k = 1 and ¢ = 1 in Theorem 3, then it reduces to the
following Struve function of order v,s o we get the following results:

(DS [ H (1) ()] ) ()

oo oy VAU 1 22
— - F SR I
o () BT

(W+n+1+2um+pu,2), 0+n+1—7+C+C +6 +2um + v, 2),
(v+n+1+2um+puv—06+¢,2),(1,1) : _ﬁ
(WHn+1+2um+pur—052),v+n+1—7+C+¢ +2um+ uv,2), 4
(U—I—n—i-l—|—2,um+w/—7'+C+5/,2),(v+%,1),(%,1) :

45

(3.3)
Corollary 4. If we put k = 1 and ¢ = 1 in Theorem 4, then it reduces to the
following Struve function of order v, so we get the following results:

/ / r n__ ]'
(Dgigo,a,é, |:tk] 1Hv(t)Jy,p,q(t—M)}) (z)

T Fnbo—y g\ VUL 1 1
O ]
(v+1) 2 5. v+ 1| 4z
(—v—n+2um+pv+6,-2),(—v—n—+7—C—C +2um + pr, —2),
(—v—n+7+2um+uw—35+¢,-2),(1,1) . a2’
s (—v —n+2um+ pv, =2),(—v —n+7—C = ¢ =6+ 2um + pv, —2), 4

(_0_77+2Nm+/17/_€,+5/a_2)a(v+%71)a(%71) ;
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Other known results are below:

If we consider J,,,(t*) = 1 and n = A, Theorem 1 reduces to the known
result due to Seema Kabra et.al([19],pp.596,Eq.(2.1)).

If we consider J,,,(t#") = 1 and n = A, Theorem 2 reduces to the known
result due to Seema Kabra et.al([19],pp.597,Eq.(2.2)).

If we consider J,,,(t#") = 1 and n = A ,Theorem 3 reduces to the known
result due to by Seema Kabra et.al([19],pp.599,Eq.(2.5)).

If we consider J,,,(t*) = 1 and n = A, Theorem 4 reduces to the known
result due to Seema Kabra et.al([19],pp.599,Eq.(2.5)).

If we consider S} (z) = 1 and ¢ — o, Theorem 1 reduces to the known result
due to H. M. Srivastava et.al([45],pp.6,Eq.(28))

If we consider S} (z) = 1 and § — o, Theorem 2 reduces to the known result
due to H. M. Srivastava et.al([45],pp.7,Eq.(31)).

If we consider S} .(z) = 1 and { — o, theorem 3 reduces to the known result
due to H. M. Srivastava et.al([45],pp.9,Eq.(40)).

If we consider S (z) = 1 and § — o, Theorem 4 reduces to the known result
due to by H. M. Srivastava et.al([45],pp.10,Eq.(43)).

4. Conclusion

In present paper, we find out the fractional calculus operator( Marichev- Saigo-
Maeda fractional integral and differential operator) involving the product of the
(p, ¢)-Extended Bessel function and Generalized k-Struve function. Now we are
going to conclude of this paper by highlighting that our results. All the theorems
and corollaries of section 2 and section 3 can be results for generalized k-Wright
function and (p, ¢) -extended Generalized hypergeometric function. We can simply
obtain various known and new results in applications.
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