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Abstract: This paper concerns the study of a numerical approximation for a sys-
tem of heat equations with n components and nonlinear boundary conditions. We
show that the solution of the semidiscrete problem, obtained by the finite difference
method, blows up in finite time. We also establish conditions under which non-
simultaneous or simultaneous blow-up occurs for the semidiscrete problem. After
proving the convergence of the numerical blow-up time, we conclude by presenting
numerical results that illustrate key aspects of our study.
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1. Introduction
In this paper, we consider the following system of heat equations with n com-
ponents and nonlinear boundary conditions:

/

(uj)t(mﬁt) = (uj)xx<x>t>v (‘Tat) S (_17 1) X (OaT)a

—(u)e(~1,t) = (Pl (-1L8),  te(0,7T),

(uj>r(17t) = (uﬁju?j:ll)(lj)? te (O7T)7 (1)
w;j(x,0) = ujo(z), ze[-1,1], j=1,...,n, n>2,
Up+1 = U1, Pn+l = P1y Gnt+1 = 41,

where the constants p;,q; > 0 for j = 1,...,n and the initial data u,o, j = 1, ..., n,
are positive, smooth, even functions satisfying the compatibility conditions.

This type of multi-component heat equation system with nonlinear boundary
conditions arises in various applied contexts. For instance, it can model autocat-
alytic chemical reactions in tubular reactors, where nonlinear loss terms at the
boundaries correspond to reactive walls [23, 17]. In heat transfer, it can describe
conduction in a rod subject to nonlinear radiative cooling (e.g., Stefan-Boltzmann
law) at the ends, possibly coupled with heat exchange between components [7, 2].
In biology, it may represent the spatial diffusion of multiple interacting species,
where exchanges or reactions occur at the boundaries, such as nutrient absorption
or toxin release through reactive membranes [18, 20]. More generally, such sys-
tems also appear in nonlinear diffusion processes with coupled boundary dynam-
ics, including transport across semi-permeable or reactive interfaces in industrial
or environmental contexts [6, 10].

Previous studies have shown the existence and uniqueness of local classical
solution (uy,...,u,) to system (1) (see, for instance, [14]). Here, [0,7) denotes
the maximal time interval on which the solution exists. The time 7" may be either
finite or infinite. If T" = +o00, the solution is said to exist globally. If T" < 400,
then the solution develops a singularity in finite time, that is,

n
limsupz 1w; (-, 1) || oo = 00,
t>T

where [|u;(-, 1) = max, \u;(z,t)|, for j=1,...,n.

In this case, we say that the solution (uy,...,u,) blows up in finite time, and
T is called the blow-up time.



Analysis of Non-Simultaneous Numerical Blow-Up in Systems ... 41

Simultaneous and non-simultaneous blow-up phenomena for systems with non-
linear boundary conditions have attracted much attention (see, e.g., [3, 4, 5, 15,
21]). We say that simultaneous blow-up occurs if all components of the solution
blow up at the same time while non-simultaneous blow-up means that at least
j € {1,...,n} components blow up while the others remain bounded up to the
blow-up time.

In [16], the authors theoretically studied various blow-up scenarios for system
(1) in a domain Br C RY| including the cases where:

e Only one component blows up;
e Exactly two components blow up;
e Blow-up may be either simultaneous or non-simultaneous, for all initial data.

In particular, they proved that for all initial data, non-simultaneous blow-up occurs
in finite time (for fixed j € {1,...,n}):

1_
oIka{O,l,...,n—2},B,,7:q”—+15"+1>0, pp<1l (p=j—1,j—

pn —1
L,7+1,...,n).
Simultaneous blow-up occurs in finite time (for fixed j € {1,...,n}):

1—
.Ifk:n_l’ﬁn:pqn—_‘—lfnﬂ>oapn<1 (77:]_17]_277]+
n

1-n), B, >0n=75—-17—-2,....,7+2—-n), Bjri_, >0, with §; =
P <1<p;(m=12,....5—1,5+1,...,n).

pj— 1’

This work aims to study the numerical approximation of system (1) using the finite
difference method, under the blow-up conditions described above, with particular
attention paid to the estimation of the blow-up time.

In this context, the numerical approximation of coupled parabolic systems ex-
hibiting blow-up continues to attract considerable interest, as evidenced by several
recent works devoted to finite difference schemes [11, 12, 13].

Our study is in line with the works [8, 9] on the numerical approximation of
nonlinear parabolic systems, as well as the references cited therein.

We organize this paper as follows. In Section 2, we present a semidiscrete scheme
for problem (1). Section 3 contains some properties of this scheme. In Section
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4, we prove that the solution of the semidiscrete scheme blows up in finite time
under certain conditions. Section 5 proposes criteria to distinguish between non-
simultaneous and simultaneous blow-up. In Section 6, we prove the convergence
of the solution and the numerical blow-up times as the mesh size tends to zero.
Section 7 presents some numerical experiments, including a discussion of the results.
Finally, Section 8 concludes the paper.

2. Semidiscrete problem
Let I > 2 be a positive integer and define the grid z; = =1+ (i — 1)h, i =
2
1,...,1, where h = 7
(u1,...,u,) of the problem (1) by (Uys,...,U,) and approximate the initial data
(U105 --.,Unp) of the same problem by (¢1p,...,¢ns). By the finite difference

method, it is easy to see that (Uyp,...,Unpn) € (C([0,73),RY))" is a solution of
the following ODEs system:

] is the mesh parameter. We approximate the solution

U (t) = 6°U;(t) + T, UUS(6), i=1,...,1, t€[0,T}), (2)
U],Z(O>:g0],la izlv"'7[7 j:1727"'7n7 n227 (3)
Un+1,z‘=U1,z', Pnt1 =D, Gni1=q, t=1,...,1, (4)

where
©ii >0, Qiryi-i=vj 1<e<I, pj,q =0,

U:ivi1(t) —2U;,;(t U;,_1(t .

0°Ujalt) = () ;;2(” sl -y g, t € [0,T),
2U; o(t) — 2U; 1 (t

U = 20220 ey,
2U: 1_1(t) — 2U; (¢t

PU (1) = = i )h? 21 ), t€[0,Th),

2
Tj,lsz,I:E, T,;,=0, 2<i< /-1

Here, U;n(t) = (U;r(1),..., U i), @in = (@51,...,9;0)", and [0,T}) is the
maximal time interval on which

max {|Upn(t)lloos -+ [Unn(B)lloc} < 00,
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where

NUjn()]|loo = max |U;;(t)|, j=1,2,...,n.

1<i<I

When the time 7}, is finite, we say that the solution (U, ...,U,p) blows up in
finite time, and the time T}, is called the blow-up time.

3. Properties of the semidiscrete scheme
In this section, we proceed with methods similar to those of [8, 9, 19] to present
some auxiliary results for problem (2)—(4), without proof.

Definition 1. We say that (U, )7, is a lower solution of (2)-(4), where U, €

CLH[0,T,),RY) for j =1,2,...,n, if

Qj,i(o) <@, t=1,..., 1
Similarly, (U;n)"_, is called an upper solution of (2)~(4), where U;, € C*((0,T5,), RY)
for g =1,2,...,n, if the inequalities are reversed.

Lemma 1. (Discrete maximum principle) Let o, 8,5 € C°([0,T3),R?) and
Ujn € CY[0,T3,),RY) such that

U]/ﬂ(t) - 52Uj7i(t) - Oéjyi(t)Ujﬂ'(t) — /Bj7i(t)Uj+17i(t) 2 O, 1= 1, Ce ,[, te (O,Th),
Uji(0) >0, i=1,....,1I, j=12,...,n,
Un+17i(t) = Ul’l'(t), 1= 1,...,[.

Then we have

Uj}i(t)EO, izl,...,[, j:1,2,...,n, t€<O,Th).

Lemma 2. (Comparison principle) Let (U, ,,)5_, and (U;n)j—; be, respectively,
lower and upper solutions of (2)~(4), where U,,,U;, € CY[0,T},),RY) for j =
1,2,...,n, and assume that U, (0) < U;n(0), j=1,2,...,n. Then

Qj,thj,]H j:1,2,...7n.
Lemma 3. (Further properties) Let k = | (I + 1)/2|, where |-| denotes the
integer part and let (Ujp)7_, be the solution of (2)~(4), where U;y, € C'([0,T)), R)

for j = 1,2,...,n, with initial data (@;n)j—, such that 0 < @;; < @jip1, J =
1.2,....n, i=k,...,I —1. Then we have
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(1) Ujn(t) > @jn, j=1,2,...,n, t € (0,T});

(i) Uppori= Uy i=1,...,I;

(i) Uyoa(8) > Upalt), j= 1,200 omy i = koo I — 1, t € (0,T3);
(iv) UL (1) >0, j=1,2....n i=hk,....I, L€ (0,T}).

4. Blow-up of the semidiscrete solution

In this section, under certain assumptions, we provide conditions for the global
existence of the solution of the semidiscrete problem, and we also show that the
solution (Uyp,...,U,n) of (2)-(4) blows up in finite time. We characterize the
blow-up or global existence of the solution (Uyp,...,U,pn) of (2)—(4) in terms of
the matrix A, defined as follows:

0 p2 gz O :
0 0 p3 g« O

A=11 0 "~
: ) ) ) .0
0 ... ... 0 0 pu1 @

For convenience, we define p,,; = p; and ¢,.; = ¢; for all integers .
Let X = (ay,...,a,) be the solution of

(A-Id)XT =(-1,...,-1". (5)
It is easy to see that a; is a fraction whose denominator is [[,_, ¢x — [ 11—, (1 — p&)

and whose numerator is negative whenever 0 < p; < landg; > Oforj=1,2,...,n.

Definition 2. We say that the solution (Uy p, ..., U, ) of (2)—(4) blows up in finite
time if there exists a finite time Tj, > 0 such that for t € [0,T}),
0 {101 (8 los - [Un (8) o} < 00 and

limsup Y~ [|Ujn(t)]|oc = +00.

t—Ty, j=1

The time T}, 1s called the blow-up time of the solution.
Theorem 1. If py,...,p, > 1, then the solution (Uyp,...,Unp) of (2)—(4) blows
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up in finite time T},.
Proof. Assume, by contradiction, that the solution exists for all time ¢ > 0. For
each j =1,...,n, from (2), we have:

_ 20514 (t) — 2U54(2)

2 . .
J,'J(t) - 2 + EUﬁ(t)qujEI(t), t>0,

with periodic conditions U417 = Uy and ¢u11 = q1-

By Lemma 3, there exists a constant m > 0 such that U;;q ;(t) > m for all ¢ > 0.
Moreover, Uj;1(t) < Ujs(t) and U; () > 0, so Uj;(t) is increasing. Thus, we
have:

2U;1-1(t) — 2U;4(2) n 2mdi+1

U]/J(t) 2 h2 h j,[(t)

12
U]’Z 7(t) grows faster than the diffusive term when U (¢)

becomes large. Therefore, there exists a time ty > 0 such that for all ¢t > tq:

The diffusive term is negative. However, since p; > 1, the

2mi+

nonlinear term

2mit 2U; 11 (t) — 2U; 1(t)
h Uj,](t) > 2 ’ h2 : ’

Consequently, for t > tg:

2mii+l 7 2U'71_1(t) — 2U7](t) mdi+i i
j,',I (t) Z h Uﬁ[<t) + ’ h2 ’ Z h U;D,] (t) :
Define g8; = —— Then for t > ty:
1. .
Us ) = UL ). (6)
J

Integrate this inequality from ¢, to t (for t > ¢¢):

Un® qu 1 !
/ - > —/ dr.
Uj,1(to) UPi BJ' to

Computing the integral yields:

1
pj—1

t—to
B

(U ) = U ) =
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Under the assumption that the solution exists for all ¢ > 0, U, ;(t) must remain
bounded (otherwise, blow-up would occur at finite time, contradicting global ex-
istence). However, the left-hand side of the inequality is bounded (since U;(t) is
bounded and p; > 1), while the right-hand side grows without bound as ¢t — oo.
This is a contradiction.

Therefore, the solution cannot exist for all time, and blow-up must occur at finite
time T3},.

Moreover, by integrating (6) from ¢y to 7}, we obtain an upper bound for T}:

b U P (t), j=1,...,n.

T, <tg+ X

Thus, if p1,...,p, > 1, the solution (Uyp, ..., U,) blows up in finite time 7}, with

Th < max <t0 + Bj Ul_pj (to)) .

~ 1<j<n pj—1 1

Theorem 2. Assume that 0 < p; <1 for j =1,2,...,n. Let (ay,...,ay,) be the
solution of (5). Then :

(1) o 11r<ni£ a; > 0, then the solution (Uyp, ..., Uyp) of (2)-(4) exists globally.
<jsn
(2) if 1r<r1i£1 a; <0, then the solution (Uyp,...,Unp) of (2)—(4) blows up in finite
<jsn
time T},.
The following lemma describes the behavior of the positive solutions of

Yi(2) =Y (2)Y;11 (=),
}G(O):Yj,0>07 j:1a27"'7n7 (7)
Yo =Y, Gn+1 = 41,

where 0 < p; <1 and ¢; > 0.

Lemma 4. Let {Y;(z)} be a positive solution of (7) with A nonsingular, and let
(v, ..., ) be the solution of (5). Then :

i) If 1I<Ill£1 a; > 0, then (7) admits a global upper solution of the form Y;(z) =
<j<n

Lj(z+ 20)*, where L; > 0 is a constant.

(ii) If 1I<Ill£l a; <0, then all positive solution of (7) blows up.
<jsn
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Proof. See [22], Theorem 2.1.

Proof of Theorem 2. The proof relies on the construction of lower solutions and
upper solutions based on the ODE system (7) and Lemma 4.

Case (1): Global existence when lgli? a; >0
<j<n

By Lemma 4, there exists a global solution ¢;(s) = L;(s + s9)® of system (7)
with L; > 0 and so > 0 chosen such that ¢,(0) > max ;. Let b(t) be a strictly

increasing, positive, and continuous function such that ¥ (t) > max;; T;;. Define
the upper-solution:

U;i(t) = ¢;(b(1), j=1,...,n,i=1,...,1I.
Then:

Ta(t) = V(0)5(b(8) > V()] (b(0)d15 (0(1) = 15T 5T (),
and U;,;(0) = ¢;(b(0)) > ¢;(0) > ;. Since U, ;(t) is constant in space, 62U ;(t) =
0. Thus:
U, (t) > 0°U () + Y07 (OU (1)
By the comparison principle (Lemma 2), (Uyp, ..., U,y ) exists globally.

Case (2): Finite-time blow-up when lr<nj£1 a; <0
<j<n

By Lemma 4, any positive solution of system (7) blows up in finite time. Choose
2
r > 0 sufficiently small and € > 0 such that ¢ < 2x < - Let a; = mx% for
i=1,...,I, where x; = =1+ (i — 1)h.
Define the lower solution:
Q]’z<t):¢](a,l—|—6t), jzl,...,n,i:L...,[,
where ¢; is a solution of (7) with ¢;(0) chosen small enough such that U, ;(0) =
¢j(a:) < @i
Verification of the inequalities:
e Interior points (2 <i <[ —1): Here, T;; = 0. We have:
U} ,(t) = edi(a; +¢t).
By Taylor expansion, 6°U,;(t) = ¢(s) - 2k + ¢(s)(2kx;)* with s = a; + et.
Since ¢(s) > 0 and (2kx;)* > 0, we have 0°U; ;(t) > 2k¢/(s). Given that
e < 2k, it follows:
Q;z(t) < 2’“25;'(3) < 52Qj,i(t)-
Pj 1745

_j7l_j+177;‘
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e Boundary points (i =1 and ¢ = I): Here, T;; = 2/h. We have:

2 p; j+1 2 b4
U i(t) = 5¢;‘(3) < E¢§J(5) ;1']++1 (s) = EQ;),Z'Q?J:—IJ'
Additionally, due to the strict growth of ¢; (from the ODE ¢; > 0) and
the decrease of a; = kx? away from the boundaries (due to grid symmetry),
Qj’i(t) is larger at the boundary points than at adjacent points, implying

6°U,;,;(t) <0 fori=1andi=1I,so:

2 g
Uja(t) < 0°U,(t) + Egﬁggff,r
Hence, (U, ;,,...,U, ) is a lower solution of (2)-(4). Since ¢;(s) blows up in finite
time and s = a; + et > et, U;,;(t) blows up in finite time. By the comparison
principle (Lemma 2), (Uyp, ..., U, ) also blows up in finite time.
This completes the proof.

Remark 1. From inequality (6), we have:

Lt
U]’j;(t

1
> .
B;

Integrating both sides over the interval [t, Ty for t € (0,T}):

Th U/ Th —
/ JI;Z(T)CZT > i/ dr = T t.
t Uj,J(T) B Ji B

The left-hand side simplifies to:

~—

~—

/°° du 1
v W (py — DUTT(1)
Thus,
1 > T, — t’
(p; = DU (1) B

which implies:

1 1 1
C— >~(T, —t), where ~v=—.
pi—1 UM B;
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3 1/(p;—1)
Consequently, there exists a constant C),, = ( J 1) such that:
bj —

Uj,[(t) S ij (Th - t)_l/(pj_l)’ le (07 Th)? j = 1a 2a ceey Ny
provided that p; > 1 for all j.
Theorems 1 and 2 yield the following corollaries:

Corollary 1. The solution of (2)—(4) blows up in finite time T}, if

max{pj—l(jzl,Z,...,n),H Hl—pj}
=1

J=1

Corollary 2. If

maX{pj_l(j:1727"'7n)7 HQJ H(l_pj>}§07

then the solution of (2)—(4) exists globally.

5. Non-simultaneous and simultaneous blow-up of the semidiscrete so-
lution

In this section, we consider the positive solution (Uy , ..., U,) of (2)—(4), with
h fixed, and we provide sufficient conditions for the occurrence of non-simultaneous
and simultaneous blow-up for all initial data. Theorems 3 and 4 below present re-
sults where k + 1 components (with & € {0,1,...,n —2}) blow up, while the
remaining (n — k — 1) components remain bounded.

Definition 3. We say that the solution (Uyp,...,U,n) of (2)(4) blows up si-
multaneously in a finite time if there exists a finite time Ty, > 0 such that for
t €10,73), max {||Uinlloos-- s |Unnlloo} < 00 and
lim sup min {|U p|lcos - - - |Unplloo} = 00
t—Ty,

The time T}, is called the stmultaneous blow-up time.

Definition 4. We say that the solution (Uyp, ..., Unp) of (2)-(4) blows up non-
stmultaneously in finite time if there exists a time T, > 0 and a subset W C
{1,...,n} such that:

(1) Forallt €0,Th), max {||Unlloos - - - [Unnlloo} < 00,



50 J. of Ramanujan Society of Mathematics and Mathematical Sciences
(2) Forall j € W, limsup ||U; (%) | e = +00,
t—)Th

(3) Forall j ¢ W, limsup ||U;xn(t)|e < 0.
t—)Th

The time T}, 1s called the non-simultaneous blow-up time.

1
Theorem 3. Fiz j € {1,...,n} and define B; =
p

T Assume p, <1 <pj for
-

m=12,...,5—1,5+1,...,n.
If ke€{0,1,....,n =2}, and for alln =j — 1,5 —2,...,5 — k, the coefficients
8, = 1 —qn+1ﬁn+1
/N pn -1
components U;_p, Ui_gt1h,-..,Ujn blow up simultaneously in a finite time Ty,
while the other (n — k — 1) components remain bounded. Moreover,

(Tj—en® oo - 1Tz @)lloc) ~ (T =)™, (Th = 1))

satisfy B, > 0 and p, < 1, and if qj—xBj—r < 1, then the

Without loss of generality, we prove the case j = n using two lemmas. Thus,

1
Bn = T The first lemma deals with the case k = 0.

Pn —
Lemma 5. Assume p,, <1<p, form=1,2,...,n—1, and that q,5, < 1. Then
only U, , blows up in a finite time T),, while the other components remain bounded.
Moreover,

Ui ()lloo ~ (T = )7

Proof. This proof consists of three steps.

Step 1. U, must be the blow-up component. Otherwise, Uy, ..., U,_1 would
remain bounded also for p,, <1 for all m =1,2,...,n — 1, which contradicts the
blow-up behavior of the full solution U, ..., Uy, since p, > 1. Consequently,
U,,n blows up at Tj,.

Step 2. Uiy, ..., U,—1, remain bounded, and ||U, 4 (t)|| < Cyp, (T — )P

For p, > 1, it follows from Remark 1 that

1Tan(loe < Gy, (Tw =)™, Yt € (0,T). (8)

Suppose that U,_1, blows up at T, and that [ is a blow-up node. From (2), we
have

_ 2Up—11-1(t) — 2U, -1 4(2)

2 1 n
n-11(f) = + UL (OUD (1), t e (0.T).




Analysis of Non-Simultaneous Numerical Blow-Up in Systems ... 51

Since Up—17-1(t) < Un—14(t), for all ¢ € (0,7}) (by Lemma 3), and using (8), we
obtain

2 _
Un-11(8) < 2O (0(C,)™ (T — 1) WP V€ (to, Th),

which implies that

Uy _1,1(t) 2
oLl 2O (Ty, — £) " Wt e (o, Th).
USi_lj[(t) —= h( pn) ( h ) ( 0 h)
Integrating this inequality from ¢, to t, we obtain:
Case1l. p,.1=1

Pn— qn— 1
Upo1 (1) < exp |In(Un_is(to)) + O, P2 =1 | vie (o, T,
Case 2. p, 1 <1
1
Pn= =111 —p,
Upas(t) < | U277 (t0) + (1= poy) 4T, P L VEE (1, Th),

(pn — Qqn — 1)h
which contradicts the assumption that U,,_; ;, blows up at 7j,. Hence, by induction,
Uj r remains bounded for all j =n —2,n—3,...,1, provided that p; < 1.
Step 3. [|Upn(t)lloo > ¢pn (Th — 1)
From (2), we have
20U 11(t) =20, 0(t) 2.,
1,1,1(75) = B2 + EUg,I(t)Uf}I(t)? le (Oa Th)

As Upr-1(t) < Uns(t), Vte (0,7,) (Lemma 3), then

where C] =

2
Lt S SUBOUE(D), Ve (0,Th),

since p; < 1, there exists a constant C' > 0 such that U ;(t) < C, Vt € (0,T}),
then U, [(t) satisfies

2
L(t) S CTUB(E), Ve (0,Th),
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which implies that

ULt 2
= < =0T, Vte (0,7,
Usj}(t) = 5 ) € ( ) h)7

integrating this inequality from ¢ to T}, we obtain

1
Uni(t) > ¢, (T —t) Pn—1 vtel0,T)),

1
-1

5 _
where ¢,, = [E(qu (pn — 1)] Pn and the proof is completed.

Next, we prove the case for k = 1. The remaining subcases k € {2,3,...,n — 2}
can be treated similarly.

11— nH~n
Lemma 6. Ifp, <1<p, form=1,2,....n—2,p,_1 <1, Bn,lz—qﬁ > 0,

Pn-1 — 1
and 1 — ¢p_1Bn—1 > 0, then U,_1 and U, , blow up simultaneously in finite time

Ty, while the other (n — 2) components remain bounded. Moreover,

(-1 (®)lloc: 1UnnB)lloc) ~ (T = )74 (T = £)~7) .

Proof. This proof is divided into four steps.

Step 1. Both U,,_1 and U, , are the blow-up components. We claim that U, is
the blow-up component. If not, then all other components would remain bounded,
since p,, <1form=1,2,...,n— 2 and p,_; < 1, which contradicts the fact that
pn > 1. Consequently, U, 5 blows up at time 75,

Assume that U,,_ ; remains bounded up to time 7}. Then, Uy, ..., U,_2; would
also remain bounded. Since U, ; blows up in T}, by Step 3 of Lemma 5, we have

Uni(t) > ¢y, (T — )", Vit e[0,Th). (9)
From (2) and (9), we have

2Up—11-1(t) =2Up—14(t) 2, _ —Brdn
Up_1(t) > 2 + EUqffﬁf(t)(Cpn)q" (T, — )"t €(0,Ty).

V

By a method similar to the proof of Theorem 1, it is easy to see that

2 -
nena(8) = SO (86, ) (T = )77 VEE (to, Th),
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since U,_1 ; is bounded, there exists a constant C' > 0 such that
2 _
U'r/z—l,l(t) 2 Ecpn_l (Cpn)qn (Th - t) Pnan 3 Vi € (toﬁ Th)a
thus

U’r/l—l,_[(t) > Cy (T, — t)fﬁnq" .Vt e (to, Ty),

2B
with Cl = Tcpn—l(cpn)(h'

Integrating this inequality from ¢y to T},, we have

Th
Un—11(Th) > Un—11(to) +Ch / (Ty, — )~ dt.
to
The boundedness of U,,_;, requires that ¢,3, < 1, which implies ,_; < 0, con-
tradicting the assumption that 3,1 > 0.
Step 2. Upper blow-up rate estimates of U,_; , and U, .
For p, > 1, we have from Remark 1,

1Unn(@)lloo < Cp, (Th =)™, Vit € (0,T). (10)
From (2), we have

2Up—11-1(t) = 2Up—1g(t) 2 ., .
1,1—1,1(75) = : )hz Li{ + EUS—l,I(t)Ug,J(t)a t € (0,Th).
Since Up—17-1(t) < Up—14(t), for all t € (0,7},) (Lemma 3), and using (10), we
obtain

2 _
ne1r(t) < EUSEHﬂ(Cpn)% (T, — )™Vt € (to, Th),

which implies that

U/ —1 I<t> _
UZZZE?[(IS) — h( pn) ( h ) ) € ( 0 h)

[\)

Integrating this inequality from ¢, to ¢, we obtain

2(1 = pu-1) (Cp,)™
h (1 - Qnﬂn)

2 (pn,1 - 1) (Cpn)q" _ 1—gnBn
g T L€ (to, Th),

U, () S U (t) + (Th, — to)' " +
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since p,_1 < 1.

1— nH~n .

As —qﬁl > 0 and p,_1 — 1 <0, it follows that 1 — ¢, 5, < 0. Thus
Pn—1 —

2(1 = pp-1) (Cp, )™
h (1 - Qnﬁn)

Hence, there exists a constant C' > 0 such that

< 0.

—Pn— 2C (pn—l - 1) (C )qn
Ul Pn—1 t < Pn
n—1,1 ( ) — h (1 _ qn,Bn>

which implies that

(Th — t)l_q"ﬁ" , Vte (0, Th),

Unfl,l(t) S Cp (Th — t)_&kl , Yt € (0, Th>7

n—1

1
2C (pus = 1) (Cp)" 1 T= oy
where C, . = - Pn Pn—1
et h (1 - Qnﬁn)
Step 3. Boundedness of U; p,, ..., Uy,—_2 . This part is similar to Step 2 of Lemma 5.
Step 4. Lower blow-up rate estimates for U,_;  and U, p,.
Since U, », blows up at T}, by Step 3 of Lemma 5 we have

Uni(t) > ¢y, (Th =), ¥t e0,Th). (11)
From (2) and (11), we have

2Up—1.1-1(t) = 2Up—1 4 (1)

2 .
o1 (t) 2 72 + LU (e)" (Th =07 e (0,Th).

By a method similar to the proof of Theorem 1, it is easy to see that

2 p—
Unaa(8) = 2 U (1)) (T — 1) frin it € (2,Th).

Integrating the above inequality from z to t, we obtain

2 t

Un1a(t) 2 5 (6,)" / Uy (1) (T — 1)~ dr, Wt € (2,Th).
Define H(t) = [I UP"Y(7) (T, — 7)~7"% dr. Then U, *; /() H'(t) = (T), — t)~"".
Since

Un—11(t) > —(cp,)"H(t), Vte (2,1n), (12)

>N
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then

HP(OH () > Q-1 ™", Ve (5T,

2 Pn—1
where @ = (E(cpn)q"

Integrating the above inequality from z to t and taking z = 2t — T},, we have
HPro(t) > (L=po) K (T — ) "% Y€ (0,Th), (13)

217%5”@ Q

here K =
where (1 - %Lﬁn) (1 - Qnﬁn)

. From (12), we deduce that

_ 2 1=pn—1
Ui > (ﬁ(cpn)%> H'"Pe=1(8), Wt € (0,T5). (14)

Using (13) and (14), we obtain

_ 2 P _
U () > K (E(cpn)q“) (1= poa) (T =)™, VL€ (0,T5),
and hence
Un1a(t) > ¢, (Th—1)"7"7, VEe(0,Th),
1
2 1=pn 1- Pn—1 .
where ¢, , = |K E(cpn)q" (1 —pn_1) , and the proof is com-
pleted.
1
Theorem 4. Fiz j € {1,...,n} and define B; = T Assume that p,, <1 < p,
pj —
1—
forallm=1,2,...,j=1,j+1,...,n. Ifk=n—-1, B, = pq"—ilfnﬂ, and p, <1
"
foralln=37-1,7-2,...,j+1=n, and 3, >0 foralln=j—1,j-2,...,7+2—n,
and Biq1—n > 0, then Uy, ..., Uy blow up simultaneously in finite time T,.
1
Without loss of generality, we prove the case j =n. So, 3, = T
Pn —
- L — qy18p41 -
Lemma 7. If f, = —————— and p, <1 < p, foralln =1,2,...,n—1,

pr]_l
and if B > 0 and B, > 0 for alln = 2,3,...,n — 1, then Uy, ..., Uy, blow up
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simultaneously in finite time Ty,.

Proof. Similarly to Step 1 of Lemma 6, we show that U,_;; and U, blow up
simultaneously in finite time 7). By Step 4 of Lemma 6, we have U,_y (t) >
Cp,_, (Ty, — t)™P»=1. Using a similar method, we find that U,,; blows up in finite
time T}, and that U, ;(t) > ¢, (T, —t) P for allm = n—2,n—3,...,2. Similarly,
for 81 > 0, Uy, also blows up at time 7},. This shows that Uy, ..., U, blow up
simultaneously in finite time T}, and the proof is complete.

6. Convergence of semidiscrete blow-up time

In this section, we study the convergence of the semidiscrete blow-up time. We
now show that for each fixed time interval [0, 7] on which the solution (ui, ..., u,)
is defined, the semidiscrete solution (U p, . . ., U, ;) approximates (uy, ..., u,) when
the mesh parameter h tends to zero. We denote

ujn(t) = (uj(xl,t),...,uj(xf,t))T, j=1,...,n.

Theorem 5. Assume that the problem (1) has a solution (u;)j_,, where u; €

C* ([-1,1] x [0,T*]) for 5 = 1,...,n, and that the initial data p;p of (2)—(4)
satisfy
lejn —uj(0)|lw =0(1), h—0, j=1,...,n (15)

Then, for h sufficiently small, the problem (2)~(4) has a unique solution (Ujn)j—,,
where Uy, € C! ([O,T*],RI) for j=1,...,n, such that

max
te[0,T%]

Uin(t) = wjn()[c = O (Z lo,n — upp(0)]loo + h) , h—0,j=1,...,n.

b=1
Proof. Let v > 0 be such that

max ([|ug (-, 6)|loo, - - -5 lun (-, ) |lee) < v, t€[0,T7]. (16)
Let t(h) < T* be the greatest value of t > 0 such that

max {[|Ujn(t) = ujn(t)llo} <1, ¢ €(0,2(h)). (17)

1<j<n

The relation (15) implies t(h) > 0, for A small enough. Using the triangle inequality,
we obtain

WUinllee <1+v, j=1,....n, forte (0,t(h)). (18)
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Let €;,(t) = U;i(t) — u;j;(t) denote the discretization error for j = 1,...,n, i =
1,...,T and t € [0,T"].
Let X; € C*!([—1,1] x [0,T*]) be such that

Xi(x,t) = (Z | — b p(0)]]oo + Kh) eM+3)t+z®—1
b=1

and define X; = ... = X, for all (x,t) € [-1,1] x [0,7*], where K and M are
positive constants.
By the Lemma 2, we can prove that

leji(t)] < Xj(xi,t) < max Xj(z;,t),forall j=1,...,n, i=1,...,1 and t € (0,t(h)).

Thus, we get

1Uj(t) = wjn(®)lloo < (Z 106, — ub,n(0)|loo + Kh) oM =1, nte (0,t(h)).
b=1

Suppose that T* > t(h). From (17), we obtain

1= [|Ujn(t(R)) — wjn(t(h))]leo < (Z op.n — b (0)]|oo +Kh> MHT™ 5 — 9 n.

Since the right-hand side of the inequality tends to zero as h — 0, we obtain the
contradiction 1 < 0, which is impossible. Consequently, t(h) = 7™ and the proof is
complete.

Theorem 6. Suppose that the solution (ui,...,u,) of problem (1) blows up in a
finite time T such that u; € C**([=1,1] x [0,T)), j = 1,...,n and the initial data
at (2)—(4) satisfies (15).
Under the assumptions of Corollary 1, the solution (Uyp, ..., U, ) of problem (2)-
(4) blows up in a finite time Ty, and we have
lim Ty, =T.
h—0
Proof. We consider the case p; > 1. The other cases p; > 1 for j € {2,...,n} can
be handled similarly.
Let p > 0, there exists a constant £ > 0 such that
1-p1
) K
T <E kgy 19
(1 —1) "2 19)
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Since u; blows up in a finite time T, there exists a time Ty € (T — p/2;T) such
that

lur (., t)|loo > 2k, for t € [Ty, T'). Denote T} =

SUPsefo,ry) U1 (-, t)[lo < 00. It follows from Theorem 5 that, for  sufficiently small,

To+T

, we see easily that

sup [[Upp(t) — ur n(t)|loo < K.
te[0,T1]

Applying the triangle inequality, we get
[U1n(T1) oo = [[urn(T1)]loo = [U1n(T1) = win(T1)]|oc = K-

From Corollary 1, we know that (Uyp,...,U,s) blows up at the time 7, . We
deduce from Remark 1 and from (19) that

T || 1=p1
|Th _ T| < ’Th _ le + ’Tl o T| < HUl,h< 1>||oo 4 ﬁ < L.
v(p1 — 1) 2

7. Numerical experiments
In this section, we present some numerical approximations of the blow-up time
for system (1) and discuss the numerical results. We use the initial data

1 1
uj,o(x):§+§x2 jzl,,n

Let n be the arc length along the curve P(t) = (t, Fi(t)), for all t € [0,7}), where
Fn= Ui Uin) s Fu(0) = (orm - snn) -
We consider ¢t and F}, as functions of 7. Since the arc length satisfies
dn® = dt* + dF} + - +dF?,,

the functions t(n) and Fj(n) satisfy the following system of differential equations:

(dt 1
d?’] nl 7
1+ > f?
=1
dF;i _ /i i=1,...,nl, (20)

d77 nl ’
1+3 f7
=1

H0) =0, F(0)>0, i=1,...,nl
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where 0 < 1 < oo and

2 1 42 .
firs1 = 35 Ujrra = Ujren) + thﬂquJL)Hp je{0.1,...,n—1},
n—1
U1 —2U;+U; .
= Yiz h2+ e (JRI 42 (k+ 1) - 1],
k‘ 0

2 .
f(j+1)[ 12 (U]Jrl)ffl - U(]+1) ) hU(I;Jii quji; o J € {07 17 s, 1}7

Un+nr =Urn, Upsnisr = Ut Gov1 = qu,

with fjr41 and f(j41)r being the f; at the boundaries.
It is well known (Hirota & Ozawa, 2006) that
lim ¢(n) =Ty, and lim ||F,(n)]e = oc.
n—00 n—0o0
For the numerical computations, we define a discrete sequence of arc lengths
m = 25-2! for I =0,1,2,...,10. For each [, we apply the DOP54 method (see

Hairer, Ngrsett and Wanner, 1993) to system (20) up to n = 7, and record the cor-

responding time approximation tl( ) = = t;. The resulting sequence {tl }l —p converges

linearly toward the blow-up time 7T},. We further accelerate this convergence recur-
sively using Aitken’s A2 method, which generates an improved sequence {tl(kﬂ)}

according to the rule:

(k1) _ (k) (t5, — 1)
s =t — = . 1>2k k=0,1,2,...
tl(—I—)Q - 2tl(+)1 + tl( )

As in Hirota & Ozawa (2006), we set RTOL = ATOL = 107! and ITOL = 1078
for all experiments, where RTOL and ATOL denote the relative and absolute error
tolerances, respectively, and ITOL determines how the errors are controlled.

7.1. Numerical results
The discrete initial conditions are given by

1 1
¢],Z:_+§(2h_h_1)27 ]:1,,77/, Z:]-??‘[

2
In the following tables, we report the numerical blow-up times T}, the number
of iterations v, the absolute errors E, = |T}, — Tay|, and the observed orders of

convergence s, for different spatial discretizations I = 16, 32,64, 128,256, 512.
The convergence order s is estimated by
_ log (Tan = Ton) /(Ton — Th))
log(2)
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Table 1: Lemma 5 with n =2, p; = 0.5, po = 2.5, ¢1 =1, ¢o = 0.1

I Th (% Eh S
16 | 0.169218174193191 | 2027 - -
32 | 0.156559254478750 | 3158 | 1.266e-2 | —
64 | 0.152408730825611 | 5386 | 4.151e-3 | 1.61
128 | 0.151116417563327 | 9723 | 1.292e-3 | 1.68
256 | 0.150728460698751 | 18210 | 3.880e-4 | 1.72
512 | 0.150613324963546 | 35259 | 1.151e-4 | 1.75

Table 2: Lemma 6 withn =3, p; = 0.5, po =0.5,p3 =25, ¢1 =2, = 0.2, g3 = 2

I Th (% Eh S
16 | 0.142024555904137 | 1887 - -
32 | 0.130509786030290 | 2900 | 1.151e-2 | -
64 | 0.126655288674220 | 4902 | 3.855e-3 | 1.58
128 | 0.125438120562574 | 8801 | 1.217e-3 | 1.66
256 | 0.125069058468841 | 16418 | 3.691e-4 | 1.72
512 | 0.124958331067865 | 31652 | 1.107e-4 | 1.74

Table 3: Lemma 7 withn =2, p; = 0.5, po =25, ¢1 =1, ¢ =3

I Th (% Eh S
16 | 0.115742236010809 | 1544 - -
32 | 0.104475544720172 | 2396 | 1.127e-2 | —
64 | 0.100734875763380 | 4155 | 3.741e-3 | 1.59
128 | 0.099564333761427 | 7325 | 1.171e-3 | 1.68
256 | 0.099211550354244 | 13701 | 3.528e-4 | 1.73
512 | 0.099108047323709 | 26118 | 1.035e-4 | 1.77

In addition to the numerical results presented in Tables 1 to 3, we provide figures
illustrating the evolution of the different components, which help to better visualize
the phenomena of simultaneous and non-simultaneous blow-up.

For the different plots, we used the same values of p; and ¢; (j = 1,...,n) used
to obtain the tables above in the case where I = 16.
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numerical solution U,

Figure 1: Lemma 5 : U, blows up while Uy ;, remains bounded for n = 2, p; = 0.5,
D2 = 257 q1 = 1, Q2 = 01
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Figure 2: Lemma 6: Usj and U, blow up while U; ;, remains bounded for n = 3,
P1 = 05, P2 = 05, P3 = 25, q1 = 2, qa = 02, qs = 2

4 4
= ] &5 W
B S
< <
S S
3 3
g 24| 2 24|
5 5
5 . 5 .
£ £
o o
01 01
1 1
05 05
0.05 o 005 o
05 05
time 0 4 space time 04

Figure 3: Lemma 7: U, and U,j blow up simultaneously for n = 2, p; = 0.5,
p2:2’57q1:17q2:3
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7.2. Discussion of numerical results

The numerical experiments robustly confirm the theoretical findings. The esti-
mated blow-up times 7}, converge with a consistent order s =~ 1.7, supporting the
theoretical convergence analysis (Section 6). The rapid decrease of the absolute
error I, with mesh refinement provides clear quantitative evidence of this conver-
gence. The application of Aitken’s A% method was instrumental in this process, as
it efficiently accelerated the initially linear convergence of the iterative sequence,
enabling a precise and computationally affordable estimation of 7}, without com-
promising accuracy.

Figures 1 to 3 perfectly illustrate the theoretical regimes: non-simultaneous
blow-up (Figs. 1, 2) and simultaneous blow-up (Fig. 3), in exact agreement with
the conditions of Lemmas 5 to 7. Furthermore, all simulations validate the theoret-
ical characterization of the blow-up set for the continuous problem (Theorem 4.4,
[16]), which states that blow-up can only occur on the boundary. In our numeri-
cal solutions, the explosive growth is observed exclusively at the boundary nodes
(x = £1), while the solution remains bounded in the interior. This confirms the
scheme’s ability to correctly capture the spatial localization of the singularity.

8. Conclusion

This paper presents a comprehensive numerical study of blow-up phenomena for
a system of n heat equations with nonlinear boundary conditions. In particular, it
provides the first complete numerical analysis of non-simultaneous blow-up for such
a multi-component system. A semi-discrete finite difference scheme is proposed
and shown to preserve the essential blow-up properties of the continuous problem.
Theoretical conditions characterizing simultaneous and non-simultaneous blow-up
are established, and the convergence of the numerical blow-up time is proved.
Numerical experiments fully support the theoretical analysis and confirm that blow-
up occurs only at the boundary, in agreement with Theorem 4.4 [16]. The numerical
strategy based on arc-length reparametrization, combined with the DOP54 solver
and Aitken’s acceleration, proves to be both robust and efficient.

Future work may include the study of fully discrete schemes, extensions to
more general nonlinearities or higher-dimensional domains, and a detailed numer-
ical analysis of blow-up profiles.
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