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28 BP 536 Abidjan 28 , CÔTE D’IVOIRE
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Abstract: This paper concerns the study of a numerical approximation for a sys-
tem of heat equations with n components and nonlinear boundary conditions. We
show that the solution of the semidiscrete problem, obtained by the finite difference
method, blows up in finite time. We also establish conditions under which non-
simultaneous or simultaneous blow-up occurs for the semidiscrete problem. After
proving the convergence of the numerical blow-up time, we conclude by presenting
numerical results that illustrate key aspects of our study.
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1. Introduction
In this paper, we consider the following system of heat equations with n com-

ponents and nonlinear boundary conditions:

(uj)t(x, t) = (uj)xx(x, t), (x, t) ∈ (−1, 1)× (0, T ),

−(uj)x(−1, t) = (u
pj
j u

qj+1

j+1 )(−1, t), t ∈ (0, T ),

(uj)x(1, t) = (u
pj
j u

qj+1

j+1 )(1, t), t ∈ (0, T ),

uj(x, 0) = uj,0(x), x ∈ [−1, 1], j = 1, . . . , n, n ≥ 2,

un+1 = u1, pn+1 = p1, qn+1 = q1,

(1)

where the constants pj, qj ≥ 0 for j = 1, . . . , n and the initial data uj,0, j = 1, . . . , n,
are positive, smooth, even functions satisfying the compatibility conditions.

This type of multi-component heat equation system with nonlinear boundary
conditions arises in various applied contexts. For instance, it can model autocat-
alytic chemical reactions in tubular reactors, where nonlinear loss terms at the
boundaries correspond to reactive walls [23, 17]. In heat transfer, it can describe
conduction in a rod subject to nonlinear radiative cooling (e.g., Stefan-Boltzmann
law) at the ends, possibly coupled with heat exchange between components [7, 2].
In biology, it may represent the spatial diffusion of multiple interacting species,
where exchanges or reactions occur at the boundaries, such as nutrient absorption
or toxin release through reactive membranes [18, 20]. More generally, such sys-
tems also appear in nonlinear diffusion processes with coupled boundary dynam-
ics, including transport across semi-permeable or reactive interfaces in industrial
or environmental contexts [6, 10].

Previous studies have shown the existence and uniqueness of local classical
solution (u1, . . . , un) to system (1) (see, for instance, [14]). Here, [0, T ) denotes
the maximal time interval on which the solution exists. The time T may be either
finite or infinite. If T = +∞, the solution is said to exist globally. If T < +∞,
then the solution develops a singularity in finite time, that is,

lim sup
t→T

n∑
j=1

∥uj(·, t)∥∞ = +∞,

where ∥uj(·, t)∥∞ = max
−1⩽x⩽1

|uj(x, t)|, for j = 1, . . . , n.

In this case, we say that the solution (u1, . . . , un) blows up in finite time, and
T is called the blow-up time.
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Simultaneous and non-simultaneous blow-up phenomena for systems with non-
linear boundary conditions have attracted much attention (see, e.g., [3, 4, 5, 15,
21]). We say that simultaneous blow-up occurs if all components of the solution
blow up at the same time while non-simultaneous blow-up means that at least
j ∈ {1, . . . , n} components blow up while the others remain bounded up to the
blow-up time.

In [16], the authors theoretically studied various blow-up scenarios for system
(1) in a domain BR ⊂ RN , including the cases where:

� Only one component blows up;

� Exactly two components blow up;

� Blow-up may be either simultaneous or non-simultaneous, for all initial data.

In particular, they proved that for all initial data, non-simultaneous blow-up occurs
in finite time (for fixed j ∈ {1, . . . , n}):

� If k ∈ {0, 1, . . . , n − 2}, βη =
1− qη+1βη+1

pη − 1
> 0, pη < 1 (η = j − 1, j −

2, . . . , j − k), qj−kβj−k < 1, with βj = 1
pj−1

, pm ≤ 1 < pj (m = 1, . . . , j −
1, j + 1, . . . , n).

Simultaneous blow-up occurs in finite time (for fixed j ∈ {1, . . . , n}):

� If k = n − 1, βη =
1− qη+1βη+1

pη − 1
> 0, pη < 1 (η = j − 1, j − 2, . . . , j +

1 − n), βη > 0(η = j − 1, j − 2, . . . , j + 2 − n), βj+1−n ≥ 0, with βj =
1

pj − 1
, pm ≤ 1 < pj (m = 1, 2, . . . , j − 1, j + 1, . . . , n).

This work aims to study the numerical approximation of system (1) using the finite
difference method, under the blow-up conditions described above, with particular
attention paid to the estimation of the blow-up time.

In this context, the numerical approximation of coupled parabolic systems ex-
hibiting blow-up continues to attract considerable interest, as evidenced by several
recent works devoted to finite difference schemes [11, 12, 13].

Our study is in line with the works [8, 9] on the numerical approximation of
nonlinear parabolic systems, as well as the references cited therein.

We organize this paper as follows. In Section 2, we present a semidiscrete scheme
for problem (1). Section 3 contains some properties of this scheme. In Section
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4, we prove that the solution of the semidiscrete scheme blows up in finite time
under certain conditions. Section 5 proposes criteria to distinguish between non-
simultaneous and simultaneous blow-up. In Section 6, we prove the convergence
of the solution and the numerical blow-up times as the mesh size tends to zero.
Section 7 presents some numerical experiments, including a discussion of the results.
Finally, Section 8 concludes the paper.

2. Semidiscrete problem
Let I ≥ 2 be a positive integer and define the grid xi = −1 + (i − 1)h, i =

1, . . . , I, where h =
2

I − 1
is the mesh parameter. We approximate the solution

(u1, . . . , un) of the problem (1) by (U1,h, . . . , Un,h) and approximate the initial data
(u1,0, . . . , un,0) of the same problem by (φ1,h, . . . , φn,h). By the finite difference
method, it is easy to see that (U1,h, . . . , Un,h) ∈

(
C1([0, Th),RI)

)n
is a solution of

the following ODEs system:

U ′
j,i(t) = δ2Uj,i(t) + Υj,iU

pj
j,i(t)U

qj+1

j+1,i(t), i = 1, . . . , I, t ∈ [0, Th), (2)

Uj,i(0) = φj,i, i = 1, . . . , I, j = 1, 2, . . . , n, n ≥ 2, (3)

Un+1,i = U1,i, pn+1 = p1, qn+1 = q1, i = 1, . . . , I, (4)

where

φj,i > 0, φj,I+1−i = φj,i, 1 ⩽ i ⩽ I, pj, qj ≥ 0,

δ2Uj,i(t) =
Uj,i+1(t)− 2Uj,i(t) + Uj,i−1(t)

h2
, 2 ⩽ i ⩽ I − 1, t ∈ [0, Th),

δ2Uj,1(t) =
2Uj,2(t)− 2Uj,1(t)

h2
, t ∈ [0, Th),

δ2Uj,I(t) =
2Uj,I−1(t)− 2Uj,I(t)

h2
, t ∈ [0, Th),

Υj,1 = Υj,I =
2

h
, Υj,i = 0, 2 ⩽ i ⩽ I − 1.

Here, Uj,h(t) = (Uj,1(t), . . . , Uj,I(t))
T , φj,h = (φj,1, . . . , φj,I)

T , and [0, Th) is the
maximal time interval on which

max {∥U1,h(t)∥∞, . . . , ∥Un,h(t)∥∞} < ∞,
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where

∥Uj,h(t)∥∞ = max
1⩽i⩽I

|Uj,i(t)| , j = 1, 2, . . . , n.

When the time Th is finite, we say that the solution (U1,h, . . . , Un,h) blows up in
finite time, and the time Th is called the blow-up time.

3. Properties of the semidiscrete scheme
In this section, we proceed with methods similar to those of [8, 9, 19] to present

some auxiliary results for problem (2)–(4), without proof.

Definition 1. We say that (U j,h)
n
j=1 is a lower solution of (2)–(4), where U j,h ∈

C1([0, Th),RI) for j = 1, 2, . . . , n, if

U ′
j,i(t) ⩽ δ2U j,i(t) + Υj,iU

pj
j,i(t)U

qj+1

j+1,i(t), i = 1, . . . , I, t ∈ (0, Th),

U j,i(0) ⩽ φj,i, i = 1, . . . , I.

Similarly, (U j,h)
n
j=1 is called an upper solution of (2)–(4), where U j,h ∈ C1([0, Th),RI)

for j = 1, 2, . . . , n, if the inequalities are reversed.

Lemma 1. (Discrete maximum principle) Let αj,h, βj,h ∈ C0([0, Th),RI) and
Uj,h ∈ C1([0, Th),RI) such that

U ′
j,i(t)− δ2Uj,i(t)− αj,i(t)Uj,i(t)− βj,i(t)Uj+1,i(t) ⩾ 0, i = 1, . . . , I, t ∈ (0, Th),

Uj,i(0) ⩾ 0, i = 1, . . . , I, j = 1, 2, . . . , n,

Un+1,i(t) = U1,i(t), i = 1, . . . , I.

Then we have

Uj,i(t) ⩾ 0, i = 1, . . . , I, j = 1, 2, . . . , n, t ∈ (0, Th).

Lemma 2. (Comparison principle) Let (U j,h)
n
j=1 and (U j,h)

n
j=1 be, respectively,

lower and upper solutions of (2)–(4), where U j,h, U j,h ∈ C1([0, Th),RI) for j =

1, 2, . . . , n, and assume that U j,h(0) ⩽ U j,h(0), j = 1, 2, . . . , n. Then

U j,h ⩽ U j,h, j = 1, 2, . . . , n.

Lemma 3. (Further properties) Let k = ⌊(I + 1)/2⌋, where ⌊·⌋ denotes the
integer part and let (Uj,h)

n
j=1 be the solution of (2)–(4), where Uj,h ∈ C1([0, Th),RI)

for j = 1, 2, . . . , n, with initial data (φj,h)
n
j=1 such that 0 < φj,i < φj,i+1, j =

1, 2, . . . , n, i = k, . . . , I − 1. Then we have
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(i) Uj,h(t) ≥ φj,h, j = 1, 2, . . . , n, t ∈ (0, Th);

(ii) Uj,I+1−i = Uj,i, i = 1, . . . , I;

(iii) Uj,i+1(t) > Uj,i(t), j = 1, 2, . . . , n, i = k, . . . , I − 1, t ∈ (0, Th);

(iv) U ′
j,i(t) ≥ 0, j = 1, 2, . . . , n, i = k, . . . , I, t ∈ (0, Th).

4. Blow-up of the semidiscrete solution
In this section, under certain assumptions, we provide conditions for the global

existence of the solution of the semidiscrete problem, and we also show that the
solution (U1,h, . . . , Un,h) of (2)–(4) blows up in finite time. We characterize the
blow-up or global existence of the solution (U1,h, . . . , Un,h) of (2)–(4) in terms of
the matrix A, defined as follows:

A =



p1 q2 0 . . . . . . 0 0

0 p2 q3 0
...

0 0 p3 q4 0
... 0

. . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . 0 0 pn−1 qn
q1 . . . . . . . . . 0 0 pn


.

For convenience, we define pn+l = pl and qn+l = ql for all integers l.
Let X = (α1, . . . , αn) be the solution of

(A− Id)XT = (−1, . . . ,−1)T . (5)

It is easy to see that αj is a fraction whose denominator is
∏n

k=1 qk−
∏n

k=1 (1− pk)
and whose numerator is negative whenever 0 ≤ pj ≤ 1 and qj ≥ 0 for j = 1, 2, . . . , n.

Definition 2. We say that the solution (U1,h, . . . , Un,h) of (2)–(4) blows up in finite
time if there exists a finite time Th > 0 such that for t ∈ [0, Th),
max {∥U1,h(t)∥∞, . . . , ∥Un,h(t)∥∞} < ∞ and

lim sup
t→Th

n∑
j=1

∥Uj,h(t)∥∞ = +∞.

The time Th is called the blow-up time of the solution.

Theorem 1. If p1, . . . , pn > 1, then the solution (U1,h, . . . , Un,h) of (2)–(4) blows
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up in finite time Th.
Proof. Assume, by contradiction, that the solution exists for all time t ≥ 0. For
each j = 1, . . . , n, from (2), we have:

U ′
j,I(t) =

2Uj,I−1(t)− 2Uj,I(t)

h2
+

2

h
U

pj
j,I(t)U

qj+1

j+1,I(t), t ≥ 0,

with periodic conditions Un+1,I = U1,I and qn+1 = q1.
By Lemma 3, there exists a constant m > 0 such that Uj+1,I(t) ≥ m for all t ≥ 0.
Moreover, Uj,I−1(t) < Uj,I(t) and U ′

j,I(t) ≥ 0, so Uj,I(t) is increasing. Thus, we
have:

U ′
j,I(t) ≥

2Uj,I−1(t)− 2Uj,I(t)

h2
+

2mqj+1

h
U

pj
j,I(t).

The diffusive term
2Uj,I−1(t)− 2Uj,I(t)

h2
is negative. However, since pj > 1, the

nonlinear term
2mqj+1

h
U

pj
j,I(t) grows faster than the diffusive term when Uj,I(t)

becomes large. Therefore, there exists a time t0 ≥ 0 such that for all t ≥ t0:

2mqj+1

h
U

pj
j,I(t) ≥ 2

∣∣∣∣2Uj,I−1(t)− 2Uj,I(t)

h2

∣∣∣∣ .
Consequently, for t ≥ t0:

U ′
j,I(t) ≥

2mqj+1

h
U

pj
j,I(t) +

2Uj,I−1(t)− 2Uj,I(t)

h2
≥ mqj+1

h
U

pj
j,I(t).

Define βj =
h

mqj+1
. Then for t ≥ t0:

U ′
j,I(t) ≥

1

βj

U
pj
j,I(t). (6)

Integrate this inequality from t0 to t (for t > t0):∫ Uj,I(t)

Uj,I(t0)

dU

Upj
≥ 1

βj

∫ t

t0

dτ.

Computing the integral yields:

1

pj − 1

(
U

1−pj
j,I (t0)− U

1−pj
j,I (t)

)
≥ t− t0

βj

.
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Under the assumption that the solution exists for all t ≥ 0, Uj,I(t) must remain
bounded (otherwise, blow-up would occur at finite time, contradicting global ex-
istence). However, the left-hand side of the inequality is bounded (since Uj,I(t) is
bounded and pj > 1), while the right-hand side grows without bound as t → ∞.
This is a contradiction.
Therefore, the solution cannot exist for all time, and blow-up must occur at finite
time Th.
Moreover, by integrating (6) from t0 to Th, we obtain an upper bound for Th:

Th ≤ t0 +
βj

pj − 1
U

1−pj
j,I (t0), j = 1, . . . , n.

Thus, if p1, . . . , pn > 1, the solution (U1,h, . . . , Un,h) blows up in finite time Th with

Th ≤ max
1≤j≤n

(
t0 +

βj

pj − 1
U

1−pj
j,I (t0)

)
.

Theorem 2. Assume that 0 ≤ pj ≤ 1 for j = 1, 2, . . . , n. Let (α1, . . . , αn) be the
solution of (5). Then :

(1) if min
1≤j≤n

αj > 0, then the solution (U1,h, . . . , Un,h) of (2)–(4) exists globally.

(2) if min
1≤j≤n

αj ≤ 0, then the solution (U1,h, . . . , Un,h) of (2)–(4) blows up in finite

time Th.

The following lemma describes the behavior of the positive solutions of
Y ′
j (z) = Y

pj
j (z)Y

qj+1

j+1 (z),

Yj(0) = Yj,0 > 0, j = 1, 2, . . . , n,

Yn+1 = Y1, qn+1 = q1,

(7)

where 0 ⩽ pj ⩽ 1 and qj ≥ 0.

Lemma 4. Let {Yj(z)} be a positive solution of (7) with A nonsingular, and let
(α1, . . . , αn) be the solution of (5). Then :

(i) If min
1≤j≤n

αj > 0, then (7) admits a global upper solution of the form Yj(z) =

Lj(z + z0)
αj , where Lj > 0 is a constant.

(ii) If min
1≤j≤n

αj ≤ 0, then all positive solution of (7) blows up.
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Proof. See [22], Theorem 2.1.

Proof of Theorem 2. The proof relies on the construction of lower solutions and
upper solutions based on the ODE system (7) and Lemma 4.

Case (1): Global existence when min
1≤j≤n

αj > 0

By Lemma 4, there exists a global solution ϕj(s) = Lj(s + s0)
αj of system (7)

with Lj > 0 and s0 > 0 chosen such that ϕj(0) ≥ max
1≤i≤I

φj,i. Let b(t) be a strictly

increasing, positive, and continuous function such that b′(t) ≥ maxj,iΥj,i. Define
the upper-solution:

U j,i(t) = ϕj(b(t)), j = 1, . . . , n, i = 1, . . . , I.

Then:

U
′
j,i(t) = b′(t)ϕ′

j(b(t)) ≥ b′(t)ϕ
pj
j (b(t))ϕ

qj+1

j+1 (b(t)) ≥ Υj,iU
pj
j,i(t)U

qj+1

j+1,i(t),

and U j,i(0) = ϕj(b(0)) ≥ ϕj(0) ≥ φj,i. Since U j,i(t) is constant in space, δ2U j,i(t) =
0. Thus:

U
′
j,i(t) ≥ δ2U j,i(t) + Υj,iU

pj
j,i(t)U

qj+1

j+1,i(t).

By the comparison principle (Lemma 2), (U1,h, . . . , Un,h) exists globally.

Case (2): Finite-time blow-up when min
1≤j≤n

αj ≤ 0

By Lemma 4, any positive solution of system (7) blows up in finite time. Choose

κ > 0 sufficiently small and ε > 0 such that ε ≤ 2κ ≤ 2

h
. Let ai = κx2

i for

i = 1, . . . , I, where xi = −1 + (i− 1)h.
Define the lower solution:

U j,i(t) = ϕj(ai + εt), j = 1, . . . , n, i = 1, . . . , I,

where ϕj is a solution of (7) with ϕj(0) chosen small enough such that U j,i(0) =
ϕj(ai) ≤ φj,i.
Verification of the inequalities:

� Interior points (2 ≤ i ≤ I − 1): Here, Υj,i = 0. We have:

U ′
j,i(t) = εϕ′

j(ai + εt).

By Taylor expansion, δ2U j,i(t) ≈ ϕ′
j(s) · 2κ + ϕ′′

j (s)(2κxi)
2 with s = ai + εt.

Since ϕ′′
j (s) ≥ 0 and (2κxi)

2 ≥ 0, we have δ2U j,i(t) ≥ 2κϕ′
j(s). Given that

ε ≤ 2κ, it follows:
U ′

j,i(t) ≤ 2κϕ′
j(s) ≤ δ2U j,i(t).

Thus, U ′
j,i(t) ≤ δ2U j,i(t) + Υj,iU

pj
j,iU

qj+1

j+1,i.
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� Boundary points (i = 1 and i = I): Here, Υj,i = 2/h. We have:

U ′
j,i(t) = εϕ′

j(s) ≤
2

h
ϕ
pj
j (s)ϕ

qj+1

j+1 (s) =
2

h
U

pj
j,iU

qj+1

j+1,i.

Additionally, due to the strict growth of ϕj (from the ODE ϕ′
j > 0) and

the decrease of ai = κx2
i away from the boundaries (due to grid symmetry),

U j,i(t) is larger at the boundary points than at adjacent points, implying
δ2U j,i(t) ≤ 0 for i = 1 and i = I, so:

U ′
j,i(t) ≤ δ2U j,i(t) +

2

h
U

pj
j,iU

qj+1

j+1,i.

Hence, (U1,h, . . . , Un,h) is a lower solution of (2)–(4). Since ϕj(s) blows up in finite
time and s = ai + εt ≥ εt, U j,i(t) blows up in finite time. By the comparison
principle (Lemma 2), (U1,h, . . . , Un,h) also blows up in finite time.
This completes the proof.

Remark 1. From inequality (6), we have:

U ′
j,I(t)

U
pj
j,I(t)

≥ 1

βj

.

Integrating both sides over the interval [t, Th] for t ∈ (0, Th):∫ Th

t

U ′
j,I(τ)

U
pj
j,I(τ)

dτ ≥ 1

βj

∫ Th

t

dτ =
Th − t

βj

.

The left-hand side simplifies to:∫ ∞

Uj,I(t)

du

upj
=

1

(pj − 1)U
pj−1
j,I (t)

.

Thus,

1

(pj − 1)U
pj−1
j,I (t)

≥ Th − t

βj

,

which implies:

1

pj − 1
· 1

U
pj−1
j,I (t)

≥ γ(Th − t), where γ =
1

βj

.



Analysis of Non-Simultaneous Numerical Blow-Up in Systems ... 49

Consequently, there exists a constant Cpj =

(
βj

pj − 1

)1/(pj−1)

such that:

Uj,I(t) ≤ Cpj(Th − t)−1/(pj−1), t ∈ (0, Th), j = 1, 2, . . . , n,

provided that pj > 1 for all j.
Theorems 1 and 2 yield the following corollaries:

Corollary 1. The solution of (2)–(4) blows up in finite time Th if

max

{
pj − 1 (j = 1, 2, . . . , n),

n∏
j=1

qj −
n∏

j=1

(1− pj)

}
> 0.

Corollary 2. If

max

{
pj − 1 (j = 1, 2, . . . , n),

n∏
j=1

qj −
n∏

j=1

(1− pj)

}
≤ 0,

then the solution of (2)–(4) exists globally.

5. Non-simultaneous and simultaneous blow-up of the semidiscrete so-
lution

In this section, we consider the positive solution (U1,h, . . . , Un,h) of (2)–(4), with
h fixed, and we provide sufficient conditions for the occurrence of non-simultaneous
and simultaneous blow-up for all initial data. Theorems 3 and 4 below present re-
sults where k + 1 components (with k ∈ {0, 1, . . . , n− 2}) blow up, while the
remaining (n− k − 1) components remain bounded.

Definition 3. We say that the solution (U1,h, . . . , Un,h) of (2)–(4) blows up si-
multaneously in a finite time if there exists a finite time Th > 0 such that for
t ∈ [0, Th), max {∥U1,h∥∞, . . . , ∥Un,h∥∞} < ∞ and

lim sup
t→Th

min {∥U1,h∥∞, . . . , ∥Un,h∥∞} = +∞

The time Th is called the simultaneous blow-up time.

Definition 4. We say that the solution (U1,h, . . . , Un,h) of (2)–(4) blows up non-
simultaneously in finite time if there exists a time Th > 0 and a subset W ⊂
{1, . . . , n} such that:

(1) For all t ∈ [0, Th), max {∥U1,h∥∞, . . . , ∥Un,h∥∞} < ∞,
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(2) For all j ∈ W , lim sup
t→Th

∥Uj,h(t)∥∞ = +∞,

(3) For all j /∈ W , lim sup
t→Th

∥Uj,h(t)∥∞ < ∞.

The time Th is called the non-simultaneous blow-up time.

Theorem 3. Fix j ∈ {1, . . . , n} and define βj =
1

pj − 1
. Assume pm ≤ 1 < pj for

m = 1, 2, . . . , j − 1, j + 1, . . . , n.
If k ∈ {0, 1, . . . , n − 2}, and for all η = j − 1, j − 2, . . . , j − k, the coefficients

βη =
1− qη+1βη+1

pη − 1
satisfy βη > 0 and pη < 1, and if qj−kβj−k < 1, then the

components Uj−k,h, Uj−k+1,h, . . . , Uj,h blow up simultaneously in a finite time Th,
while the other (n− k − 1) components remain bounded. Moreover,

(∥Uj−k,h(t)∥∞, . . . , ∥Uj,h(t)∥∞) ∼
(
(Th − t)−βj−k , . . . , (Th − t)−βj

)
.

Without loss of generality, we prove the case j = n using two lemmas. Thus,

βn =
1

pn − 1
. The first lemma deals with the case k = 0.

Lemma 5. Assume pm ≤ 1 < pn for m = 1, 2, . . . , n− 1, and that qnβn < 1. Then
only Un,h blows up in a finite time Th, while the other components remain bounded.
Moreover,

∥Un,h(t)∥∞ ∼ (Th − t)−βn .

Proof. This proof consists of three steps.
Step 1. Un,h must be the blow-up component. Otherwise, U1,h, . . . , Un−1,h would
remain bounded also for pm ≤ 1 for all m = 1, 2, . . . , n − 1, which contradicts the
blow-up behavior of the full solution U1,h, . . . , Un,h, since pn > 1. Consequently,
Un,h blows up at Th.

Step 2. U1,h, . . . , Un−1,h remain bounded, and ∥Un,h(t)∥∞ ≤ Cpn (Th − t)−βn .
For pn > 1, it follows from Remark 1 that

∥Un,h(t)∥∞ ≤ Cpn (Th − t)−βn , ∀t ∈ (0, Th). (8)

Suppose that Un−1,h blows up at Th and that I is a blow-up node. From (2), we
have

U ′
n−1,I(t) =

2Un−1,I−1(t)− 2Un−1,I(t)

h2
+

2

h
U

pn−1

n−1,I(t)U
qn
n,I(t), t ∈ (0, Th).
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Since Un−1,I−1(t) < Un−1,I(t), for all t ∈ (0, Th) (by Lemma 3), and using (8), we
obtain

U ′
n−1,I(t) ≤

2

h
U

pn−1

n−1,I(t)(Cpn)
qn (Th − t)−qnβn , ∀t ∈ (t0, Th),

which implies that

U ′
n−1,I(t)

U
pn−1

n−1,I(t)
≤ 2

h
(Cpn)

qn (Th − t)−qnβn , ∀t ∈ (t0, Th).

Integrating this inequality from t0 to t, we obtain:
Case 1. pn−1 = 1

Un−1,I(t) ≤ exp

ln (Un−1,I(t0)) + C1T

pn − qn − 1

pn − 1
h

 , ∀t ∈ (t0, Th),

Case 2. pn−1 < 1

Un−1,I(t) ≤

U1−pn−1

n−1,I (t0) + (1− pn−1)C1T

pn − qn − 1

pn − 1
h


1

1− pn−1

, ∀t ∈ (t0, Th),

where C1 =
2(Cpn)

qn (pn − 1)

(pn − qn − 1)h
.

which contradicts the assumption that Un−1,h blows up at Th. Hence, by induction,
Uj,h remains bounded for all j = n− 2, n− 3, . . . , 1, provided that pj ≤ 1.

Step 3. ∥Un,h(t)∥∞ ≥ cpn (Th − t)−βn .
From (2), we have

U ′
n,I(t) =

2Un,I−1(t)− 2Un,I(t)

h2
+

2

h
Upn
n,I(t)U

q1
1,I(t), t ∈ (0, Th).

As Un,I−1(t) < Un,I(t), ∀t ∈ (0, Th) (Lemma 3), then

U ′
n,I(t) ≤

2

h
Upn
n,I(t)U

q1
1,I(t), ∀t ∈ (0, Th),

since p1 ≤ 1, there exists a constant C > 0 such that U1,I(t) ≤ C, ∀t ∈ (0, Th),
then Un,I(t) satisfies

U ′
n,I(t) ≤

2

h
Cq1Upn

n,I(t), ∀t ∈ (0, Th),
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which implies that

U ′
n,I(t)

Upn
n,I(t)

≤ 2

h
Cq1 , ∀t ∈ (0, Th),

integrating this inequality from t to Th, we obtain

Un,I(t) ≥ cpn (Th − t)
−

1

pn − 1 , ∀t ∈ [0, Th),

where cpn =

[
2

h
Cq1 (pn − 1)

]− 1

pn − 1 and the proof is completed.

Next, we prove the case for k = 1. The remaining subcases k ∈ {2, 3, . . . , n − 2}
can be treated similarly.

Lemma 6. If pm ≤ 1 < pn for m = 1, 2, . . . , n−2, pn−1 < 1, βn−1 =
1− qnβn

pn−1 − 1
> 0,

and 1 − qn−1βn−1 > 0, then Un−1,h and Un,h blow up simultaneously in finite time
Th, while the other (n− 2) components remain bounded. Moreover,

(∥Un−1,h(t)∥∞, ∥Un,h(t)∥∞) ∼
(
(Th − t)−βn−1 , (Th − t)−βn

)
.

Proof. This proof is divided into four steps.
Step 1. Both Un−1,h and Un,h are the blow-up components. We claim that Un,h is
the blow-up component. If not, then all other components would remain bounded,
since pm ≤ 1 for m = 1, 2, . . . , n− 2 and pn−1 < 1, which contradicts the fact that
pn > 1. Consequently, Un,h blows up at time Th.
Assume that Un−1,h remains bounded up to time Th. Then, U1,h, . . . , Un−2,h would
also remain bounded. Since Un,h blows up in Th, by Step 3 of Lemma 5, we have

Un,I(t) ≥ cpn (Th − t)−βn , ∀t ∈ [0, Th). (9)

From (2) and (9), we have

U ′
n−1,I(t) ≥

2Un−1,I−1(t)− 2Un−1,I(t)

h2
+

2

h
U

pn−1

n−1,I(t)(cpn)
qn (Th − t)−βnqn , t ∈ (0, Th).

By a method similar to the proof of Theorem 1, it is easy to see that

U ′
n−1,I(t) ≥

2

h
U

pn−1

n−1,I(t)(cpn)
qn (Th − t)−βnqn , ∀t ∈ (t0, Th),
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since Un−1,I is bounded, there exists a constant C > 0 such that

U ′
n−1,I(t) ≥ 2

h
Cpn−1(cpn)

qn (Th − t)−βnqn , ∀t ∈ (t0, Th),

thus

U ′
n−1,I(t) ≥ C1 (Th − t)−βnqn , ∀t ∈ (t0, Th),

with C1 =
2B

h
Cpn−1(cpn)

qn .

Integrating this inequality from t0 to Th, we have

Un−1,I(Th) ≥ Un−1,I(t0) + C1

∫ Th

t0

(Th − t)−βnqn dt.

The boundedness of Un−1,h requires that qnβn < 1, which implies βn−1 < 0, con-
tradicting the assumption that βn−1 > 0.
Step 2. Upper blow-up rate estimates of Un−1,h and Un,h.
For pn > 1, we have from Remark 1,

∥Un,h(t)∥∞ ≤ Cpn (Th − t)−βn , ∀t ∈ (0, Th). (10)

From (2), we have

U ′
n−1,I(t) =

2Un−1,I−1(t)− 2Un−1,I(t)

h2
+

2

h
U

pn−1

n−1,I(t)U
qn
n,I(t), t ∈ (0, Th).

Since Un−1,I−1(t) < Un−1,I(t), for all t ∈ (0, Th) (Lemma 3), and using (10), we
obtain

U ′
n−1,I(t) ≤

2

h
U

pn−1

n−1,I(t)(Cpn)
qn (Th − t)−qnβn , ∀t ∈ (t0, Th),

which implies that

U ′
n−1,I(t)

U
pn−1

n−1,I(t)
≤ 2

h
(Cpn)

qn (Th − t)−qnβn , ∀t ∈ (t0, Th).

Integrating this inequality from t0 to t, we obtain

U
1−pn−1

n−1,I (t) ≤ U
1−pn−1

n−1,I (t0) +
2 (1− pn−1) (Cpn)

qn

h (1− qnβn)
(Th − t0)

1−qnβn +

2 (pn−1 − 1) (Cpn)
qn

h (1− qnβn)
(Th − t)1−qnβn , ∀t ∈ (t0, Th),
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since pn−1 < 1.

As
1− qnβn

pn−1 − 1
> 0 and pn−1 − 1 < 0, it follows that 1− qnβn < 0. Thus

2 (1− pn−1) (Cpn)
qn

h (1− qnβn)
< 0.

Hence, there exists a constant C > 0 such that

U
1−pn−1

n−1,I (t) ≤ 2C (pn−1 − 1) (Cpn)
qn

h (1− qnβn)
(Th − t)1−qnβn , ∀t ∈ (0, Th),

which implies that

Un−1,I(t) ≤ Cpn−1 (Th − t)−βn−1 , ∀t ∈ (0, Th),

where Cpn−1 =

[
2C (pn−1 − 1) (Cpn)

qn

h (1− qnβn)

] 1

1− pn−1 .

Step 3. Boundedness of U1,h, . . . , Un−2,h. This part is similar to Step 2 of Lemma 5.
Step 4. Lower blow-up rate estimates for Un−1,h and Un,h.
Since Un,h blows up at Th, by Step 3 of Lemma 5 we have

Un,I(t) ≥ cpn (Th − t)−βn , ∀t ∈ [0, Th). (11)

From (2) and (11), we have

U ′
n−1,I(t) ≥

2Un−1,I−1(t)− 2Un−1,I(t)

h2
+

2

h
U

pn−1

n−1,I(t)(cpn)
qn (Th − t)−βnqn , t ∈ (0, Th).

By a method similar to the proof of Theorem 1, it is easy to see that

U ′
n−1,I(t) ≥ 2

h
U

pn−1

n−1,I(t)(cpn)
qn (Th − t)−βnqn , ∀t ∈ (z, Th).

Integrating the above inequality from z to t, we obtain

Un−1,I(t) ≥ 2

h
(cpn)

qn

∫ t

z

U
pn−1

n−1,I(τ) (Th − τ)−βnqn dτ, ∀t ∈ (z, Th).

Define H(t) =
∫ t

z
U

pn−1

n−1,I(τ) (Th − τ)−βnqn dτ. Then U
−pn−1

n−1,I (t)H ′(t) = (Th − t)−βnqn .
Since

Un−1,I(t) ≥ 2

h
(cpn)

qnH(t), ∀t ∈ (z, Th), (12)
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then

H−pn−1(t)H ′(t) ≥ Q (Th − t)−βnqn , ∀t ∈ (z, Th),

where Q =

(
2

h
(cpn)

qn

)pn−1

.

Integrating the above inequality from z to t and taking z = 2t− Th, we have

H1−pn−1(t) ≥ (1− pn−1)K (Th − t)1−qnβn , ∀t ∈ (0, Th), (13)

where K =
21−qnβnQ

(1− qnβn)
− Q

(1− qnβn)
. From (12), we deduce that

U
1−pn−1

n−1,I (t) ≥
(
2

h
(cpn)

qn

)1−pn−1

H1−pn−1(t), ∀t ∈ (0, Th). (14)

Using (13) and (14), we obtain

U
1−pn−1

n−1,I (t) ≥ K

(
2

h
(cpn)

qn

)1−pn−1

(1− pn−1) (Th − t)1−qnβn , ∀t ∈ (0, Th),

and hence

Un−1,I(t) ≥ cpn−1 (Th − t)−βn−1 , ∀t ∈ (0, Th),

where cpn−1 =

[
K

(
2

h
(cpn)

qn

)1−pn−1

(1− pn−1)

] 1

1− pn−1
, and the proof is com-

pleted.

Theorem 4. Fix j ∈ {1, . . . , n} and define βj =
1

pj − 1
. Assume that pm ≤ 1 < pj

for all m = 1, 2, . . . , j−1, j+1, . . . , n. If k = n−1, βη =
1− qη+1βη+1

pη − 1
, and pη < 1

for all η = j−1, j−2, . . . , j+1−n, and βη > 0 for all η = j−1, j−2, . . . , j+2−n,
and βj+1−n ≥ 0, then U1,h, . . . , Un,h blow up simultaneously in finite time Th.

Without loss of generality, we prove the case j = n. So, βn =
1

pn − 1
.

Lemma 7. If βη =
1− qη+1βη+1

pη − 1
and pη ≤ 1 < pn for all η = 1, 2, . . . , n − 1,

and if β1 ≥ 0 and βη > 0 for all η = 2, 3, . . . , n − 1, then U1,h, . . . , Un,h blow up
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simultaneously in finite time Th.
Proof. Similarly to Step 1 of Lemma 6, we show that Un−1,h and Un,h blow up
simultaneously in finite time Th. By Step 4 of Lemma 6, we have Un−1,I(t) ≥
cpn−1(Th − t)−βn−1 . Using a similar method, we find that Um,h blows up in finite
time Th, and that Um,I(t) ≥ cpm(Th−t)−βm for all m = n−2, n−3, . . . , 2. Similarly,
for β1 ≥ 0, U1,h also blows up at time Th. This shows that U1,h, . . . , Un,h blow up
simultaneously in finite time Th, and the proof is complete.

6. Convergence of semidiscrete blow-up time

In this section, we study the convergence of the semidiscrete blow-up time. We
now show that for each fixed time interval [0, T ∗] on which the solution (u1, . . . , un)
is defined, the semidiscrete solution (U1,h, . . . , Un,h) approximates (u1, . . . , un) when
the mesh parameter h tends to zero. We denote

uj,h(t) = (uj(x1, t), . . . , uj(xI , t))
T , j = 1, . . . , n.

Theorem 5. Assume that the problem (1) has a solution (uj)
n
j=1, where uj ∈

C4,1 ([−1, 1]× [0, T ∗]) for j = 1, . . . , n, and that the initial data φj,h of (2)–(4)
satisfy

∥φj,h − uj(0)∥∞ = o(1), h → 0, j = 1, . . . , n. (15)

Then, for h sufficiently small, the problem (2)–(4) has a unique solution (Uj,h)
n
j=1,

where Uj,h ∈ C1
(
[0, T ∗],RI

)
for j = 1, . . . , n, such that

max
t∈[0,T ∗]

∥Uj,h(t)− uj,h(t)∥∞ = O

(
n∑

b=1

∥φb,h − ub,h(0)∥∞ + h

)
, h → 0, j = 1, . . . , n.

Proof. Let ν > 0 be such that

max (∥u1(·, t)∥∞, . . . , ∥un(·, t)∥∞) < ν, t ∈ [0, T ∗]. (16)

Let t(h) ⩽ T ∗ be the greatest value of t > 0 such that

max
1⩽j⩽n

{∥Uj,h(t)− uj,h(t)∥∞} < 1, t ∈ (0, t(h)) . (17)

The relation (15) implies t(h) > 0, for h small enough. Using the triangle inequality,
we obtain

∥Uj,h(t)∥∞ ⩽ 1 + ν, j = 1, . . . , n, for t ∈ (0, t(h)). (18)
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Let ej,i(t) = Uj,i(t) − uj,i(t) denote the discretization error for j = 1, . . . , n, i =
1, . . . , I and t ∈ [0, T ∗].
Let X1 ∈ C4,1([−1, 1]× [0, T ∗]) be such that

X1(x, t) =

(
n∑

b=1

∥φb,h − ub,h(0)∥∞ +Kh

)
e(M+3)t+x2−1,

and define X1 = . . . = Xn for all (x, t) ∈ [−1, 1] × [0, T ∗], where K and M are
positive constants.

By the Lemma 2, we can prove that

|ej,i(t)| < Xj(xi, t) ≤ maxXj(xi, t), for all j = 1, . . . , n, i = 1, . . . , I and t ∈ (0, t(h)).

Thus, we get

∥Uj,h(t)− uj,h(t)∥∞ ⩽

(
n∑

b=1

∥φb,h − ub,h(0)∥∞ +Kh

)
e(M+3)t, j = 1, . . . , n t ∈ (0, t(h)).

Suppose that T ∗ > t(h). From (17), we obtain

1 = ∥Uj,h(t(h))− uj,h(t(h))∥∞ ≤

(
n∑

b=1

∥φb,h − ub,h(0)∥∞ +Kh

)
e(M+3)T ∗

j = 1, . . . , n.

Since the right-hand side of the inequality tends to zero as h → 0, we obtain the
contradiction 1 ⩽ 0, which is impossible. Consequently, t(h) = T ∗ and the proof is
complete.

Theorem 6. Suppose that the solution (u1, . . . , un) of problem (1) blows up in a
finite time T such that uj ∈ C4,1([−1, 1]× [0, T )), j = 1, . . . , n and the initial data
at (2)–(4) satisfies (15).
Under the assumptions of Corollary 1, the solution (U1,h, . . . , Un,h) of problem (2)–
(4) blows up in a finite time Th and we have

lim
h→0

Th = T.

Proof. We consider the case p1 > 1. The other cases pj > 1 for j ∈ {2, . . . , n} can
be handled similarly.

Let µ > 0, there exists a constant κ > 0 such that

y1−p1

γ (p1 − 1)
⩽

µ

2
, κ ⩽ y. (19)
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Since u1 blows up in a finite time T , there exists a time T0 ∈ (T − µ/2;T ) such
that

∥u1(., t)∥∞ ≥ 2κ, for t ∈ [T0, T ). Denote T1 =
T0 + T

2
, we see easily that

supt∈[0,T1] ∥u1(., t)∥∞ < ∞. It follows from Theorem 5 that, for h sufficiently small,

sup
t∈[0,T1]

∥U1,h(t)− u1,h(t)∥∞ ⩽ κ.

Applying the triangle inequality, we get

∥U1,h(T1)∥∞ ≥ ∥u1,h(T1)∥∞ − ∥U1,h(T1)− u1,h(T1)∥∞ ≥ κ.

From Corollary 1, we know that (U1,h, . . . , Un,h) blows up at the time Th . We
deduce from Remark 1 and from (19) that

|Th − T | ⩽ |Th − T1|+ |T1 − T | ⩽ ∥U1,h(T1)∥1−p1
∞

γ(p1 − 1)
+

µ

2
⩽ µ.

7. Numerical experiments
In this section, we present some numerical approximations of the blow-up time

for system (1) and discuss the numerical results. We use the initial data

uj,0(x) =
1

2
+

1

2
x2 j = 1, . . . , n.

Let η be the arc length along the curve P (t) = (t, Fh(t)) , for all t ∈ [0, Th), where

Fh = (U1,h, . . . , Un,h)
T , Fh(0) = (φ1,h, . . . , φn,h)

T .

We consider t and Fh as functions of η. Since the arc length satisfies

dη2 = dt2 + dF 2
1 + · · ·+ dF 2

nI ,

the functions t(η) and Fh(η) satisfy the following system of differential equations:

dt

dη
=

1√
1 +

nI∑
i=1

f 2
i

,

dFi

dη
=

fi√
1 +

nI∑
i=1

f 2
i

, i = 1, . . . , nI,

t(0) = 0, Fi(0) ≥ 0, i = 1, . . . , nI,

(20)
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where 0 < η < ∞ and

fjI+1 =
2

h2
(UjI+2 − UjI+1) +

2

h
U

pj+1

jI+1U
qj+2

(j+1)I+1, j ∈ {0, 1, . . . , n− 1},

fi =
Ui−1 − 2Ui + Ui+1

h2
, i ∈

n−1⋃
k=0

[kI + 2, (k + 1)I − 1],

f(j+1)I =
2

h2
(U(j+1)I−1 − U(j+1)I) +

2

h
U

pj+1

(j+1)IU
qj+2

(j+2)I , j ∈ {0, 1, . . . , n− 1},

U(n+1)I = UI , U(n+1)I+1 = U1, qn+1 = q1,

with fjI+1 and f(j+1)I being the fi at the boundaries.
It is well known (Hirota & Ozawa, 2006) that

lim
η→∞

t(η) = Th, and lim
η→∞

∥Fh(η)∥∞ = ∞.

For the numerical computations, we define a discrete sequence of arc lengths
ηl = 25 · 2l, for l = 0, 1, 2, . . . , 10. For each l, we apply the DOP54 method (see
Hairer, Nørsett and Wanner, 1993) to system (20) up to η = ηl and record the cor-

responding time approximation t
(0)
l = tl. The resulting sequence {t(0)l }10l=0 converges

linearly toward the blow-up time Th. We further accelerate this convergence recur-
sively using Aitken’s ∆2 method, which generates an improved sequence {t(k+1)

l }
according to the rule:

t
(k+1)
l+2 = t

(k)
l+1 −

(t
(k)
l+2 − t

(k)
l+1)

2

t
(k)
l+2 − 2t

(k)
l+1 + t

(k)
l

, l ≥ 2k, k = 0, 1, 2, . . .

As in Hirota & Ozawa (2006), we set RTOL = ATOL = 10−15 and ITOL = 10−8

for all experiments, where RTOL and ATOL denote the relative and absolute error
tolerances, respectively, and ITOL determines how the errors are controlled.

7.1. Numerical results
The discrete initial conditions are given by

φj,i =
1

2
+

1

2
(ih− h− 1)2, j = 1, . . . , n, i = 1, . . . , I.

In the following tables, we report the numerical blow-up times Th, the number
of iterations v, the absolute errors Eh = |Th − T2h|, and the observed orders of
convergence s, for different spatial discretizations I = 16, 32, 64, 128, 256, 512.

The convergence order s is estimated by

s =
log ((T4h − T2h)/(T2h − Th))

log(2)
.
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Table 1: Lemma 5 with n = 2, p1 = 0.5, p2 = 2.5, q1 = 1, q2 = 0.1

I Th v Eh s
16 0.169218174193191 2027 – –
32 0.156559254478750 3158 1.266e-2 –
64 0.152408730825611 5386 4.151e-3 1.61
128 0.151116417563327 9723 1.292e-3 1.68
256 0.150728460698751 18210 3.880e-4 1.72
512 0.150613324963546 35259 1.151e-4 1.75

Table 2: Lemma 6 with n = 3, p1 = 0.5, p2 = 0.5, p3 = 2.5, q1 = 2, q2 = 0.2, q3 = 2

I Th v Eh s
16 0.142024555904137 1887 – –
32 0.130509786030290 2900 1.151e-2 –
64 0.126655288674220 4902 3.855e-3 1.58
128 0.125438120562574 8801 1.217e-3 1.66
256 0.125069058468841 16418 3.691e-4 1.72
512 0.124958331067865 31652 1.107e-4 1.74

Table 3: Lemma 7 with n = 2, p1 = 0.5, p2 = 2.5, q1 = 1, q2 = 3

I Th v Eh s
16 0.115742236010809 1544 – –
32 0.104475544720172 2396 1.127e-2 –
64 0.100734875763380 4155 3.741e-3 1.59
128 0.099564333761427 7325 1.171e-3 1.68
256 0.099211550354244 13701 3.528e-4 1.73
512 0.099108047323709 26118 1.035e-4 1.77

In addition to the numerical results presented in Tables 1 to 3, we provide figures
illustrating the evolution of the different components, which help to better visualize
the phenomena of simultaneous and non-simultaneous blow-up.

For the different plots, we used the same values of pj and qj (j = 1, . . . , n) used
to obtain the tables above in the case where I = 16.
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Figure 1: Lemma 5 : U2,h blows up while U1,h remains bounded for n = 2, p1 = 0.5,
p2 = 2.5, q1 = 1, q2 = 0.1

Figure 2: Lemma 6: U3,h and U2,h blow up while U1,h remains bounded for n = 3,
p1 = 0.5, p2 = 0.5, p3 = 2.5, q1 = 2, q2 = 0.2, q3 = 2

Figure 3: Lemma 7: U1,h and U2,h blow up simultaneously for n = 2, p1 = 0.5,
p2 = 2.5, q1 = 1, q2 = 3
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7.2. Discussion of numerical results
The numerical experiments robustly confirm the theoretical findings. The esti-

mated blow-up times Th converge with a consistent order s ≈ 1.7, supporting the
theoretical convergence analysis (Section 6). The rapid decrease of the absolute
error Eh with mesh refinement provides clear quantitative evidence of this conver-
gence. The application of Aitken’s ∆2 method was instrumental in this process, as
it efficiently accelerated the initially linear convergence of the iterative sequence,
enabling a precise and computationally affordable estimation of Th without com-
promising accuracy.

Figures 1 to 3 perfectly illustrate the theoretical regimes: non-simultaneous
blow-up (Figs. 1, 2) and simultaneous blow-up (Fig. 3), in exact agreement with
the conditions of Lemmas 5 to 7. Furthermore, all simulations validate the theoret-
ical characterization of the blow-up set for the continuous problem (Theorem 4.4,
[16]), which states that blow-up can only occur on the boundary. In our numeri-
cal solutions, the explosive growth is observed exclusively at the boundary nodes
(x = ±1), while the solution remains bounded in the interior. This confirms the
scheme’s ability to correctly capture the spatial localization of the singularity.

8. Conclusion
This paper presents a comprehensive numerical study of blow-up phenomena for

a system of n heat equations with nonlinear boundary conditions. In particular, it
provides the first complete numerical analysis of non-simultaneous blow-up for such
a multi-component system. A semi-discrete finite difference scheme is proposed
and shown to preserve the essential blow-up properties of the continuous problem.
Theoretical conditions characterizing simultaneous and non-simultaneous blow-up
are established, and the convergence of the numerical blow-up time is proved.
Numerical experiments fully support the theoretical analysis and confirm that blow-
up occurs only at the boundary, in agreement with Theorem 4.4 [16]. The numerical
strategy based on arc-length reparametrization, combined with the DOP54 solver
and Aitken’s acceleration, proves to be both robust and efficient.

Future work may include the study of fully discrete schemes, extensions to
more general nonlinearities or higher-dimensional domains, and a detailed numer-
ical analysis of blow-up profiles.
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[4] Brändle C., Quirós F., Rossi J. D., The role of nonlinear diffusion in non-
simultaneous blow-up, J. Math. Anal. Appl., 308 (2005), 92-104.
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