

**CHARACTERIZATIONS OF  $\delta_p$ -NORMAL SPACE BY  
GENERALIZED VERSION OF  $\delta_p$ -OPEN  
SET IN FUZZY  $m$ -SPACE**

**Anjana Bhattacharyya**

Department of Mathematics,  
Victoria Institution (College),  
78 B, A.P.C. Road Kolkata - 700009, INDIA  
E-mail : anjanabhattacharyya@hotmail.com

(Received: Oct. 08, 2025 Accepted: Dec. 16, 2025 Published: Dec. 30, 2025)

**Abstract:** In this paper we characterize fuzzy  $m$ - $\delta_p$ -normal space [7] by  $fmg\delta_p$ -open set, the class of which is strictly larger than that of fuzzy  $m$ -open set [2]. Also here we introduce fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed, almost  $f(m, m_1)g\delta_p$ -closed and  $fmg\delta_p$ -closed functions between two fuzzy  $m$ -spaces and establish the interrelations of these functions. The applications of these functions on fuzzy  $m$ - $\delta_p$ -normal space are shown here.

**Keywords and Phrases:** Fuzzy  $m$ -closed set, fuzzy  $m$ - $\delta$ -preclosed set,  $fmg\delta_p$ -closed set, fuzzy  $m$ - $\delta_p$ -normal space, fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function,  $fmg\delta_p$ -closed function, fuzzy  $m$ -normal space.

**2020 Mathematics Subject Classification:** Primary 54A40, Secondary 03E72.

**1. Introduction**

Alimohammady and Roohi introduced fuzzy minimal structure as follows : A family  $\mathcal{M}$  of fuzzy sets in a non-empty set  $X$  is said to be a fuzzy minimal structure on  $X$  if  $\alpha 1_X \in \mathcal{M}$  for every  $\alpha \in [0, 1]$  [1]. However a more general version of it is introduced in [8, 10] as follows : A family  $\mathcal{F}$  of fuzzy sets in a non-empty set  $X$  is a fuzzy minimal structure on  $X$  if  $0_X \in \mathcal{F}$  and  $1_X \in \mathcal{F}$ . In this paper, we use this notion of fuzzy minimal structure. In [2], we introduced fuzzy minimal space (fuzzy  $m$ -space, for short) as follows : Let  $X$  be a non-empty set and  $m \subset I^X$ .

Then  $(X, m)$  is called fuzzy  $m$ -space if  $0_X \in m$  and  $1_X \in m$ . The members of  $m$  are called fuzzy  $m$ -open sets and the complement of a fuzzy  $m$ -open set is called fuzzy  $m$ -closed set [2]. In [3], fuzzy  $m$ - $\delta$ -preopen set is introduced. Using this concept as a basic tool, in [7] we introduce and study fuzzy  $m$ - $\delta_p$ -normal space. Here we further characterize fuzzy  $m$ - $\delta_p$ -normal space by introducing  $fmg\delta_p$ -open set, the class of which is strictly larger than that of fuzzy  $m$ - $\delta$ -preopen set.

## 2. Preliminaries

Throughout this paper,  $(X, m)$  or simply by  $X$  we shall mean a fuzzy minimal space (fuzzy  $m$ -space, for short). The support [12] of a fuzzy set  $A$ , denoted by  $suppA$  or  $A_0$  and is defined by  $suppA = \{x \in X : A(x) \neq 0\}$ . The fuzzy set with the singleton support  $\{x\} \subseteq X$  and the value  $t$  ( $0 < t \leq 1$ ) will be denoted by  $x_t$ .  $0_X$  and  $1_X$  are the constant fuzzy sets taking values 0 and 1 respectively in  $X$ . The complement [12] of a fuzzy set  $A$  in a fuzzy  $m$ -space  $X$  is denoted by  $1_X \setminus A$  and is defined by  $(1_X \setminus A)(x) = 1 - A(x)$ , for each  $x \in X$ . For any two fuzzy sets  $A, B$  in  $X$ ,  $A \leq B$  means  $A(x) \leq B(x)$ , for all  $x \in X$  [12] while  $AqB$  means  $A$  is quasi-coincident (q-coincident, for short) [11] with  $B$ , i.e., there exists  $x \in X$  such that  $A(x) + B(x) > 1$ . The negation of these two statements will be denoted by  $A \not\leq B$  and  $A \not q B$  respectively. For any two fuzzy sets  $A$  and  $B$  in a fuzzy  $m$ -space  $(X, m)$ ,  $A \vee B = \max\{A(x), B(x)\}$ , for all  $x \in X$  and  $A \wedge B = \min\{A(x), B(x)\}$ , for all  $x \in X$ .

For a fuzzy set  $A$  and a fuzzy point  $x_\alpha$  in  $X$ ,  $x_\alpha \in A$  means  $A(x) \geq \alpha$ .

## 3. Some Well-Known Definitions

In this section we recall some definitions from [2, 3, 4, 7] which will be used thereafter.

**Definition 3.1.** [2] Let  $X$  be a non-empty set and  $m \subset I^X$  an  $m$ -structure on  $X$ . For  $A \in I^X$ , the  $m$ -closure of  $A$  and  $m$ -interior of  $A$  are defined as follows :

$$mclA = \bigwedge \{F : A \leq F, 1_X \setminus F \in m\}$$

$$mintA = \bigvee \{D : D \leq A, D \in m\}.$$

It can be observed that for a given fuzzy minimal structure on  $X$ ,  $A \in I^X$  does not imply that  $mintA \in m$  and  $mclA$  is fuzzy  $m$ -closed. But if  $m$  satisfies  $\mathcal{B}$ -condition (i.e.,  $m$  is closed under arbitrary union) [3], then  $mintA \in m$  and  $mclA$  is fuzzy  $m$ -closed.

**Lemma 3.2.** [2] Let  $(X, m)$  be a fuzzy  $m$ -space and  $A \in I^X$ . Then

- (i)  $mclA = A$  if  $1_X \setminus A \in m$  and
- (ii)  $mintA = A$  if  $A \in m$ .

**Definition 3.3.** [3] Let  $(X, m)$  be a fuzzy  $m$ -space and  $A \in I^X$ . Then  $A$  is called fuzzy  $m$ -regular open (resp., fuzzy  $m$ -preopen) if  $A = \text{mint}(\text{mcl}A)$  (resp.,  $A \leq \text{mint}(\text{mcl}A)$ ). The complement of this set is called fuzzy  $m$ -regular closed (resp., fuzzy  $m$ -preclosed).

The intersection of all fuzzy  $m$ -preclosed sets containing a fuzzy set  $A$  is called fuzzy  $m$ -closure of  $A$ , denoted by  $\text{mpcl}A$ .

**Definition 3.4.** [3] Let  $(X, m)$  be a fuzzy  $m$ -space and  $A \in I^X$ . Then fuzzy  $m$ - $\delta$ -closure and fuzzy  $m$ - $\delta$ -interior of  $A$ , denoted by  $\text{m}\delta\text{cl}A$  and  $\text{m}\delta\text{int}A$  are defined as follows :

$$\begin{aligned} \text{m}\delta\text{cl}A &= \{x_\alpha \in X : A \text{ qm} \text{int}(\text{mcl}U), \text{ for all } U \in m \text{ with } x_\alpha \text{ q}U\}, \\ \text{m}\delta\text{int}A &= \bigvee \{W : W \text{ is fuzzy } m\text{-regular open set in } X \text{ with } W \leq A\} \end{aligned}$$

**Definition 3.5.** [3] Let  $(X, m)$  be a fuzzy  $m$ -space and  $A \in I^X$ . Then  $A$  is called fuzzy  $m$ - $\delta$ -preopen if  $A \leq \text{mint}(\text{m}\delta\text{cl}A)$ .

Then complement of this set is called fuzzy  $m$ - $\delta$ -preclosed.

The union (resp., intersection) of all fuzzy  $m$ - $\delta$ -preopen (resp., fuzzy  $m$ - $\delta$ -preclosed) sets contained in (resp., containing) a fuzzy set  $A$  in  $X$  is called fuzzy  $m$ - $\delta$ -preinterior (resp., fuzzy  $m$ - $\delta$ -preclosure) of  $A$ , denoted by  $\text{m}\delta\text{int}A$  (resp.,  $\text{m}\delta\text{pcl}A$ ). In general,  $\text{m}\delta\text{int}A$  (resp.,  $\text{m}\delta\text{pcl}A$ ) may not be fuzzy  $m$ - $\delta$ -preopen (resp., fuzzy  $m$ - $\delta$ -preclosed) for any  $A \in I^X$ . But if  $m$  satisfies  $\mathcal{B}$  condition, then  $\text{m}\delta\text{int}A$  (resp.,  $\text{m}\delta\text{cl}A$ ) is fuzzy  $m$ - $\delta$ -preopen (resp., fuzzy  $m$ - $\delta$ -preclosed).

If  $A \in I^X$  is fuzzy  $m$ - $\delta$ -preopen (resp., fuzzy  $m$ - $\delta$ -preclosed), then  $\text{m}\delta\text{int}A = A$  (resp.,  $\text{m}\delta\text{pcl}A = A$ ). The collection of all fuzzy  $m$ - $\delta$ -preopen (resp., fuzzy  $m$ - $\delta$ -preclosed) sets in  $(X, m)$  will be denoted by  $\text{Fm}\delta\text{PO}(X)$  (resp.,  $\text{Fm}\delta\text{PC}(X)$ ).

**Result 3.6.** [7] let  $(X, m)$  be a fuzzy  $m$ -space and  $A \in I^X$  and  $x_\alpha$  be a fuzzy point in  $X$ . Then  $x_\alpha \in \text{m}\delta\text{pcl}A$  if and only if for any  $U \in \text{Fm}\delta\text{PO}(X)$  with  $x_\alpha \text{ q}U$ ,  $U \text{ q}A$ .

**Result 3.7.** [7] Let  $(X, m)$  be a fuzzy  $m$ -space and  $A \in I^X$ . Then for any  $U \in \text{Fm}\delta\text{PO}(X)$ ,  $U \not\text{q}A \Rightarrow U \not\text{q}\text{m}\delta\text{pcl}A$ .

**Lemma 3.8.** [7] Let  $(X, m)$  be a fuzzy  $m$ -space and  $A, B \in I^X$ . Then the following statements are true :

- (i)  $\text{m}\delta\text{pcl}(1_X \setminus A) = 1_X \setminus \text{m}\delta\text{int}A$ ,
- (ii)  $\text{m}\delta\text{int}(1_X \setminus A) = 1_X \setminus \text{m}\delta\text{pcl}A$ ,
- (iii) if  $A \leq B$ , then (a)  $\text{m}\delta\text{pcl}A \leq \text{m}\delta\text{pcl}B$ , (b)  $\text{m}\delta\text{int}A \leq \text{m}\delta\text{int}B$ ,
- (iv)  $\text{m}\delta\text{pcl}(\text{m}\delta\text{pcl}A) = \text{m}\delta\text{pcl}A$ ,
- (v)  $\text{m}\delta\text{int}(\text{m}\delta\text{int}A) = \text{m}\delta\text{int}A$ .

**Definition 3.9.** [3] A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be fuzzy  $(m, m_1)$ -open (resp., fuzzy  $(m, m_1)$ -closed) function if  $f(U) \in m_1$  (resp.,  $f(U) \in m_1^c$ ) for

every  $U \in m$  (resp.,  $U \in m^c$ ).

**Definition 3.10.** [3] A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be fuzzy  $(m, m_1)$ -continuous if  $f^{-1}(U) \in m$  for every  $U \in m_1$ .

**Definition 3.11.** [7] A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function if  $f(U) \in Fm_1\delta PC(Y)$  for every  $U \in Fm\delta PC(X)$ .

**Definition 3.12.** [3] A fuzzy  $m$ -space  $(X, m)$  is said to be fuzzy  $m$ -normal space if for any fuzzy  $m$ -closed set  $F$  and a fuzzy  $m$ -open set  $G$  such that  $F \leq G$ , there exists a fuzzy  $m$ -open set  $H$  such that  $F \leq H \leq mclH \leq G$ .

**Definition 3.13.** [7] A fuzzy  $m$ -space  $(X, m)$  is said to be fuzzy  $m$ - $\delta_p$ -normal space if for any fuzzy  $m$ -closed set  $F$  and a fuzzy  $m$ -open set  $G$  such that  $F \leq G$ , there exists a fuzzy  $m$ - $\delta$ -preopen set  $H$  such that  $F \leq H \leq m\delta pclH \leq G$ .

#### 4. $fmg\delta_p$ -Closed Set : Some Properties

In this section we first introduce a generalized version of fuzzy closed set in fuzzy  $m$ -space and establish the mutual relationships of this newly defined set with the sets defined in [4, 6]. Next we introduce different types of functions and lastly we establish the mutual relationships among themselves.

**Definition 4.1.** A fuzzy set  $A$  in a fuzzy  $m$ -space  $(X, m)$  is said to be  $fmg$ -closed [4] (resp.,  $fmgp$ -closed [6]) if  $mclA \leq U$  (resp.,  $mpclA \leq U$ ) whenever  $A \leq U$  where  $U \in m$ . The complement of  $fmg$ -closed (resp.,  $fmgp$ -closed) set in  $X$  is called  $fmg$ -open (resp.,  $fmgp$ -open).

**Definition 4.2.** A fuzzy set  $A$  in a fuzzy  $m$ -space  $(X, m)$  is said to be  $fmg\delta_p$ -closed if  $m\delta pclA \leq U$  whenever  $A \leq U$  where  $U \in m$ . The complement of an  $fmg\delta_p$ -closed set is  $fmg\delta_p$ -open.

**Remark 4.3.** So we have the following relationship among the sets defined so far:



Figure 1

None of the above implications is reversible as it seen from the following examples.

**Example 4.4.**  $fmg\delta_p$ -closed set  $\not\Rightarrow fmg$ -closed set

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, A, B, C, D, E\}$  where  $A(a) = 0.6, A(b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.4, D(a) = 0.6, D(b) = 0.5, E(a) = E(b) = 0.4$ . Then  $(X, m)$  is a fuzzy  $m$ -space. Here  $Fm\delta PO(X) = \{0_X, 1_X, P, Q, R, S\}$  where  $P(a) = 0.4, P(b) \leq 0.4, 0.4 < Q(a) \leq 0.6, Q(b) \leq 0.5, R \geq 1_X \setminus E$  and  $0 \leq S(a) \leq 1, S(b) > 0.6$  and  $Fm\delta PC(X) = \{0_X, 1_X, 1_X \setminus P, 1_X \setminus Q, 1_X \setminus R, 1_X \setminus S\}$  where  $(1_X \setminus P)(a) = 0.6, (1_X \setminus P)(b) \geq 0.6, 0.4 \leq (1_X \setminus Q)(a) < 0.6, (1_X \setminus Q)(b) \geq 0.5, 1_X \setminus R \leq E$  and  $0 \leq (1_X \setminus S)(a) \leq 1, (1_X \setminus S)(b) < 0.4$ . Consider the fuzzy set  $U$  defined by  $U(a) = 0.4, U(b) = 0.3$ . Then  $U < E$  where  $E \in m$  and  $mclU = 1_X \setminus D \not\leq E \Rightarrow U$  is not  $fmg$ -closed. But  $m\delta pclU = U < E \Rightarrow U$  is  $fmg\delta_p$ -closed set in  $X$ .

**Example 4.5.**  $fmg\delta_p$ -closed set  $\not\Rightarrow fmgp$ -closed set

Consider Example 4.4. Here  $FmPC(X) = \{0_X, 1_X, U, V\}$  where  $U < E$  and  $0.4 \leq V(a) \leq 0.5, V(b) = 0.5$ . Consider the fuzzy set  $M$  defined by  $M(a) = 0.51, M(b) = 0.5$ . Then  $M < D \in m$ . Now  $mpclM = 1_X \not\leq D \Rightarrow M$  is not  $fmgp$ -closed set in  $X$ . But  $m\delta pclM = M < D \Rightarrow M$  is  $fmg\delta_p$ -closed set in  $X$ .

**Example 4.6.**  $fmg\delta_p$ -closed set  $\not\Rightarrow$  fuzzy  $m$ - $\delta$ -preclosed set

Consider Example 4.4. Consider the fuzzy set  $W$  defined by  $W(a) = 0.6, W(b) = 0.55$ . Then  $W$  is not fuzzy  $m$ - $\delta$ -preclosed set in  $X$ . But  $W < 1_X \in m$  only and so  $m\delta pclW \leq 1_X \Rightarrow W$  is  $fmg\delta_p$ -closed set in  $X$ .

**Definition 4.7.** A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be

- (i) fuzzy  $(m, m_1)$ - $\delta$ -preclosed if  $f(K)$  is fuzzy  $m_1$ - $\delta$ -preclosed set in  $Y$  for every fuzzy  $m$ -closed set  $K$  of  $X$ ,
- (ii)  $f(m, m_1)g\delta_p$ -closed if  $f(K)$  is  $f m_1 g\delta_p$ -closed in  $Y$  for every fuzzy  $m$ -closed set  $K$  of  $X$ .

**Definition 4.8.** A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be

- (i) fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed if  $f(K) \in m_1^c$  for each  $K \in Fm\delta PC(X)$ ,
- (ii)  $f m\delta_p$ - $f m_1 g\delta_p$ -closed if  $f(K)$  is  $f m_1 g\delta_p$ -closed set in  $Y$  for each  $K \in Fm\delta PC(X)$ ,
- (iii) almost  $f(m, m_1)g\delta_p$ -closed if  $f(K)$  is  $f m_1 g\delta_p$ -closed set in  $Y$  for each  $K \in FmRC(X)$ .

**Remark 4.9.** For a function  $f : (X, m) \rightarrow (Y, m_1)$ , the following diagram holds :

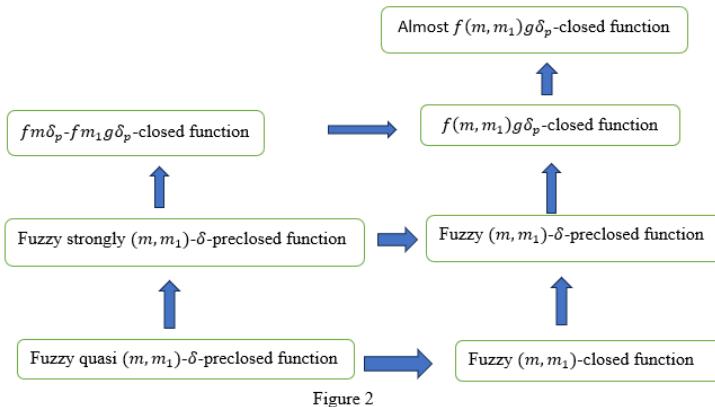


Figure 2

The following examples show that the reverse implications are not necessarily true, in general.

**Example 4.10.** Fuzzy  $(m, m_1)$ -closed function  $\not\Rightarrow$  fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed function

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, A, B, C, D, E\}$ ,  $m_1 = \{0_X, 1_X, A_1, B_1, C_1, D_1, E_1, F_1\}$  where  $A(a) = 0.6$ ,  $A(b) = 0.4$ ,  $B(a) = B(b) = 0.5$ ,  $C(a) = 0.5$ ,  $C(b) = 0.4$ ,  $D(a) = 0.6$ ,  $D(b) = 0.5$ ,  $E(a) = E(b) = 0.4$ ,  $A_1(a) = 0.4$ ,  $A_1(b) = 0.5$ ,  $B_1(a) = 0.5$ ,  $B_1(b) = 0.4$ ,  $C_1(a) = C_1(b) = 0.4$ ,  $D_1(a) = D_1(b) = 0.5$ ,  $E_1(a) = 0.6$ ,  $E_1(b) = 0.4$ ,  $F_1(a) = 0.6$ ,  $F_1(b) = 0.5$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Consider the identity function  $i : (X, m) \rightarrow (X, m_1)$ . Clearly  $i$  is fuzzy  $(m, m_1)$ -closed function. Consider the fuzzy set  $U$  defined by  $U(a) = 0.6$ ,  $U(b) = 0.7$ . Then  $U \in Fm\delta PC(X)$ . Now  $i(U) = U \notin m_1^c \Rightarrow i$  is not fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed function.

**Example 4.11.** Fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function  $\not\Rightarrow$  fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed function

Consider Example 4.10. Here  $Fm\delta PC(X) = \{0_X, 1_X, U, V, W, S, T\}$  where  $U(a) \geq 0.6$ ,  $U(b) \geq 0.6$ ,  $0.5 \leq V(a) < 0.6$ ,  $V(b) \geq 0.5$ ,  $0.4 \leq W(a) < 0.5$ ,  $W(b) \geq 0.5$ ,  $S < E$ ,  $0 \leq T(a) \leq 1$ ,  $T(b) < 0.4$  and that of  $Fm_1\delta PC(X)$  is  $\{0_X, 1_X, U_1, V_1, W_1\}$  where  $U_1 \geq D_1$ ,  $V_1 \geq A_1$ ,  $W_1 < C_1$ . Then clearly the identity function  $i : (X, m) \rightarrow (X, m_1)$  is fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function but not fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed function.

**Example 4.12.** Fuzzy  $(m, m_1)$ - $\delta$ -preclosed function  $\not\Rightarrow$  fuzzy  $(m, m_1)$ -closed function

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, U\}$  where  $U(a) = 0.4$ ,  $U(b) = 0.3$ ,  $m_1 = \{0_X, 1_X, A, B, C, D, E\}$  where  $A(a) = 0.6$ ,  $A(b) = 0.4$ ,  $B(a) = B(b) = 0.5$ ,  $C(a) = 0.5$ ,  $C(b) =$

0.4,  $D(a) = 0.6, D(b) = 0.5, E(a) = E(b) = 0.4$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Consider the identity function  $i : (X, m) \rightarrow (X, m_1)$ . Clearly  $i$  is not fuzzy  $(m, m_1)$ -closed function. But  $1_X \setminus U \in m^c, i(1_X \setminus U) = 1_X \setminus U \in Fm_1\delta PC(X) \Rightarrow i$  is fuzzy  $(m, m_1)$ - $\delta$ -preclosed function.

**Example 4.13.** Fuzzy  $(m, m_1)$ - $\delta$ -preclosed function  $\not\Rightarrow$  fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X\}$ ,  $m_1 = \{0_X, 1_X, A, B, C, D, E\}$  where  $A(a) = 0.6, A(b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.4, D(a) = 0.6, D(b) = 0.5, E(a) = E(b) = 0.4$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Consider the identity function  $i : (X, m) \rightarrow (X, m_1)$ . Clearly  $i$  is fuzzy  $(m, m_1)$ - $\delta$ -preclosed function. Now every fuzzy set in  $(X, m)$  is fuzzy  $m$ - $\delta$ -preclosed set in  $(X, m)$ . Consider the fuzzy set  $S$  defined by  $S(a) = 0.3, S(b) = 0.5$ . Then  $S \in Fm\delta PC(X)$ . Now  $i(S) = S \notin Fm_1\delta PC(X) \Rightarrow i$  is not fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function.

**Example 4.14.**  $f(m, m_1)g\delta_p$ -closed function  $\not\Rightarrow$  fuzzy  $(m, m_1)$ - $\delta$ -preclosed function

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, A, B, C, D, E\}$ ,  $m_1 = \{0_X, 1_X, S\}$  where  $A(a) = 0.6, (b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.4, D(a) = 0.6, D(b) = 0.5, E(a) = E(b) = 0.4, S(a) = 0.4, S(b) = 0.3$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Consider the identity function  $i : (X, m) \rightarrow (X, m_1)$ . Here  $1_X \setminus A \in m^c, i(1_X \setminus A) = 1_X \setminus A \notin Fm_1\delta PC(X)$  (Indeed,  $Fm_1\delta PC(X) = \{0_X, 1_X, U, V\}$  where  $U < S, V \geq 1_X \setminus S \Rightarrow i$  is not fuzzy  $(m, m_1)$ - $\delta$ -preclosed function. But for any fuzzy  $m$ -closed set  $T$  in  $(X, m)$ , we have  $i(T) = T < 1_X \in m_1$  only and so  $m_1\delta pcl T \leq 1_X \Rightarrow i$  is  $f(m, m_1)g\delta_p$ -closed function.

**Example 4.15.**  $f(m, m_1)g\delta_p$ -closed function  $\not\Rightarrow f m \delta_p$ - $f m_1 g \delta_p$ -closed function

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, G\}$ ,  $m_1 = \{0_X, 1_X, A, B, C, D, E\}$  where  $G(a) = 0.5, G(b) = 0.4, A(a) = 0.6, A(b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.4, D(a) = 0.6, D(b) = 0.5, E(a) = E(b) = 0.4$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Here  $Fm\delta PC(X) = \{0_X, 1_X, S, T\}$  where  $S \geq 1_X \setminus G, T < G$  and  $Fm_1\delta PC(X) = \{0_X, 1_X, U, V, W, P\}$  where  $U(a) = 0.6, U(b) \geq 0.6, 0.5 \leq V(a) < 0.6, V(b) \geq 0.5, 0.4 < W(a) < 0.5, W(b) \geq 0.5, P < E$ . Consider the identity function  $i : (X, m) \rightarrow (X, m_1)$ . Let  $H$  be a fuzzy set in  $(X, m)$  defined by  $H(a) = 0.5, H(b) = 0.3$ . Then  $H \in Fm\delta PC(X)$ . Now  $i(H) = H < C \in m_1$ , but  $m_1\delta pcl(H) = B \not\leq C \Rightarrow H$  is not  $f m_1 g \delta_p$ -closed set in  $(X, m_1) \Rightarrow i$  is not  $f m \delta_p$ - $f m_1 g \delta_p$ -closed function. But  $1_X \setminus G \in m^c, i(1_X \setminus G) = 1_X \setminus G < 1_X (\in m_1)$  only and so  $m_1\delta pcl(1_X \setminus G) \leq 1_X \Rightarrow 1_X \setminus G$  is  $f m_1 g \delta_p$ -closed set in  $(X, m_1) \Rightarrow i$  is  $f(m, m_1)g\delta_p$ -closed function.

**Example 4.16.**  $fm_1\delta_p$ - $fmg\delta_p$ -closed function  $\not\Rightarrow$  fuzzy strongly  $(m_1, m)$ - $\delta$ -preclosed function

Consider Example 4.15. Consider the identity function  $i : (X, m_1) \rightarrow (X, m)$ . For every fuzzy  $m_1$ - $\delta$ -preclosed set  $K$  other than  $P(< E)$ ,  $1_X$  is the only fuzzy  $m$ -open set in  $(X, m)$  such that  $i(K) = K \leq 1_X$  and so  $m\deltapclK \leq 1_X \Rightarrow K$  is  $fmg\delta_p$ -closed set in  $(X, m)$  and  $i(P) = P < G \in m$  and so  $m\deltapclP = P < G$ . Hence  $i$  is  $fm_1\delta_p$ - $fmg\delta_p$ -closed function. But  $B \in Fm_1\delta PC(X)$ ,  $i(B) = B \notin Fm\delta PC(X) \Rightarrow i$  is not fuzzy strongly  $(m_1, m)$ - $\delta$ -preclosed function.

**Example 4.17.** Almost  $f(m, m_1)g\delta_p$ -closed function  $\not\Rightarrow f(m, m_1)g\delta_p$ -closed function

Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, G, H\}$ ,  $m_1 = \{0_X, 1_X, A, B, C, D, E\}$  where  $G(a) = 0.4$ ,  $G(b) = 0.45$ ,  $H(a) = 0.5$ ,  $H(b) = 0.6$ ,  $A(a) = 0.6$ ,  $A(b) = 0.4$ ,  $B(a) = B(b) = 0.5$ ,  $C(a) = 0.5$ ,  $C(b) = 0.4$ ,  $D(a) = 0.6$ ,  $D(b) = 0.5$ ,  $E(a) = E(b) = 0.4$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Now  $FmRC(X) = \{0_X, 1_X, 1_X \setminus G\}$ . Consider the identity function  $i : (X, m) \rightarrow (X, m_1)$ . Now  $i(1_X \setminus G) = 1_X \setminus G < 1_X (\in m_1)$  only and so  $m_1\deltapcl(1_X \setminus G) \leq 1_X \Rightarrow i$  is almost  $f(m, m_1)g\delta_p$ -closed function. But  $1_X \setminus H \in m^c$  and  $i(1_X \setminus H) = 1_X \setminus H \leq C \in m_1$  and  $m_1\deltapcl(1_X \setminus H) = B \not\leq C \Rightarrow i$  is not  $f(m, m_1)g\delta_p$ -closed function.

**Definition 4.18.** A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be  $fm\delta_p$ - $fm_1g\delta_p$ -continuous if  $f^{-1}(K)$  is  $fmg\delta_p$ -closed set in  $X$  for every  $K \in Fm_1\delta PC(Y)$ .

**Theorem 4.19.** A function  $f : (X, m) \rightarrow (Y, m_1)$  is  $fm\delta_p$ - $fm_1g\delta_p$ -continuous if and only if  $f^{-1}(K)$  is  $fmg\delta_p$ -open set in  $X$  for every  $K \in Fm_1\delta PO(Y)$ .

**Proof.** Obvious.

**Theorem 4.20.** If  $f : (X, m) \rightarrow (Y, m_1)$  is fuzzy  $(m, m_1)$ -closed,  $fm\delta_p$ - $fm_1g\delta_p$ -continuous, surjective function, then  $f^{-1}(K)$  is  $fmg\delta_p$ -closed set in  $X$  for each  $fm_1g\delta_p$ -closed set  $K$  of  $Y$ , where  $m_1$  satisfies  $\mathcal{B}$  condition.

**Proof.** Let  $K$  be  $fm_1g\delta_p$ -closed set in  $Y$  and let  $U$  be fuzzy  $m$ -open set in  $X$  such that  $f^{-1}(K) \leq U$ . We have to show that  $m\deltapclf^{-1}(K) \leq U$ . Put  $V = 1_Y \setminus f(1_X \setminus U)$ . As  $f$  is fuzzy  $(m, m_1)$ -closed function,  $V$  is fuzzy  $m_1$ -open set in  $Y$ . Now

$$f^{-1}(V) = f^{-1}(1_Y \setminus f(1_X \setminus U)) = 1_X \setminus f^{-1}(f(1_X \setminus U)) \leq 1_X \setminus (1_X \setminus U) = U \quad (i)$$

Now  $f(1_X \setminus U) \leq 1_Y \setminus f(U) \Rightarrow V = 1_Y \setminus f(1_X \setminus U) \geq f(U) \Rightarrow f(U) \leq V \Rightarrow K = f(f^{-1}(K)) \leq f(U) \leq V$ . As  $K$  is  $fm_1g\delta_p$ -closed in  $Y$ ,  $m_1\deltapclK \leq V \Rightarrow K \leq m_1\deltapclK \leq V \Rightarrow f^{-1}(K) \leq f^{-1}(m_1\deltapclK) \leq f^{-1}(V) \leq U$  (by (i)). As  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -continuous function,  $f^{-1}(m_1\deltapclK)$  is  $fmg\delta_p$ -closed set in  $X$  (as  $m_1$

satisfies  $\mathcal{B}$  condition) and hence  $m\deltapcl(f^{-1}(m_1\deltapclK)) \leq U$  (by definition). Therefore,  $m\deltapcl(f^{-1}(K)) \leq m\deltapcl(f^{-1}(m_1\deltapclK)) \leq U \Rightarrow f^{-1}(K)$  is  $fmg\delta_p$ -closed set in  $X$ .

**Theorem 4.21.** *A surjective function  $f : (X, m) \rightarrow (Y, m_1)$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed if and only if for each  $B \in I^Y$  and each  $U \in Fm\delta PO(X)$  with  $f^{-1}(B) \leq U$ , there exists an  $fm_1g\delta_p$ -open set  $V$  of  $Y$  such that  $B \leq V$  and  $f^{-1}(V) \leq U$ .*

**Proof.** Let  $f$  be  $fm\delta_p$ - $fm_1g\delta_p$ -closed surjective function. Let  $B \in I^Y$  and  $U \in Fm\delta PO(X)$  with  $f^{-1}(B) \leq U$ . Let  $V = 1_Y \setminus f(1_X \setminus U)$ . Then  $f^{-1}(V) = f^{-1}(1_Y \setminus f(1_X \setminus U)) = 1_X \setminus f^{-1}(f(1_X \setminus U)) \leq 1_X \setminus (1_X \setminus U) = U$  and so  $f^{-1}(V) \leq U$ . Now  $1_X \setminus f^{-1}(B) \geq 1_X \setminus U \Rightarrow f(1_X \setminus U) \leq f(1_X \setminus f^{-1}(B)) = 1_Y \setminus f(f^{-1}(B)) = 1_Y \setminus B \Rightarrow B \leq 1_Y \setminus f(1_X \setminus U) = V$ . As  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed function,  $f(1_X \setminus U)$  is  $fm_1g\delta_p$ -closed set in  $Y$  as  $1_X \setminus U \in Fm\delta PC(X)$  and so  $V$  is  $fm_1g\delta_p$ -open set in  $Y$ .

Conversely, let  $K \in Fm\delta PC(X)$ . Now  $f^{-1}(1_Y \setminus f(K)) \leq 1_X \setminus K \in Fm\delta PO(X)$ . By assumption, there exists an  $fm_1g\delta_p$ -open set  $V$  of  $Y$  such that  $1_Y \setminus f(K) \leq V$  and  $f^{-1}(V) \leq 1_X \setminus K \Rightarrow f(K) \geq 1_Y \setminus V$  and  $K \leq 1_X \setminus f^{-1}(V) = f^{-1}(1_Y \setminus V) \Rightarrow f(K) \leq f(f^{-1}(1_Y \setminus V)) = 1_Y \setminus V \Rightarrow f(K) = 1_Y \setminus V$  which is  $fm_1g\delta_p$ -closed in  $Y$ . Hence  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed function.

**Theorem 4.22.** *If  $f : (X, m) \rightarrow (Y, m_1)$  is fuzzy  $(m, m_1)$ -continuous and  $fm\delta_p$ - $fm_1g\delta_p$ -closed function, then  $f(H)$  is  $fm_1g\delta_p$ -closed set in  $Y$  for each  $fmg\delta_p$ -closed set  $H$  in  $X$ , where  $m$  satisfies  $\mathcal{B}$  condition.*

**Proof.** Let  $H$  be  $fmg\delta_p$ -closed in  $X$  and  $V$  be fuzzy  $m_1$ -open set in  $Y$  such that  $f(H) \leq V$ . Now  $H \leq f^{-1}(f(H)) \leq f^{-1}(V)$  which is fuzzy  $m$ -open in  $X$ . As  $H$  is  $fmg\delta_p$ -closed in  $X$ ,  $m\deltapclH \leq f^{-1}(V)$  and so  $f(m\deltapclH) \leq f(f^{-1}(V)) \leq V$ . Since  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed function and  $m\deltapclH \in Fm\delta PC(X)$  (as  $m$  satisfies  $\mathcal{B}$  condition),  $f(m\deltapclH)$  is  $fm_1g\delta_p$ -closed set in  $Y$ . Then  $m_1\deltapcl(f(m\deltapclH)) \leq V$  and so  $f(H) \leq f(m\deltapclH) \leq m_1\deltapcl(f(m\deltapclH)) \leq V \Rightarrow m_1\deltapcl(f(H)) \leq m_1\deltapcl(f(m\deltapclH))$  (by using Lemma 3.8(iv)))  $\leq V \Rightarrow f(H)$  is  $fm_1g\delta_p$ -closed set in  $Y$ .

**Definition 4.23.** [5] *A function  $f : (X, m) \rightarrow (Y, m_1)$  is said to be fuzzy  $(m, m_1)$ - $\delta$ -precontinuous if  $f^{-1}(V) \in Fm\delta PO(X)$  for every  $V \in Fm_1\delta PO(Y)$ .*

**Remark 4.24.** *Clearly a fuzzy  $(m, m_1)$ - $\delta$ -precontinuous function is  $fm\delta_p$ - $fm_1g\delta_p$ -continuous, but the converse may not be true as it seen from the following example.*

**Example 4.25.**  *$fm\delta_p$ - $fm_1g\delta_p$ -continuous function  $\Rightarrow$  fuzzy  $(m, m_1)$ - $\delta$ -precontinuous function*

Let  $X = \{a, b\}$ ,  $m_1 = \{0_X, 1_X, S\}$ ,  $m = \{0_X, 1_X, A, B, C, D, E\}$  where  $S(a) =$

$0.4, S(b) = 0.45, A(a) = 0.6, A(b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.4, D(a) = 0.6, D(b) = 0.5, E(a) = E(b) = 0.4$ . Then  $(X, m)$  and  $(X, m_1)$  are fuzzy  $m$ -spaces. Now  $Fm\delta PC(X) = \{0_X, 1_X, U, V, W, P, Q\}$  where  $U(a) \geq 0.6, U(b) \geq 0.6, 0.5 \leq V(a) < 0.6, V(b) \geq 0.5, 0.4 \leq W(a) < 0.5, W(b) \geq 0.5, P < E, 0 \leq Q(a) \leq 1, Q(b) < 0.4$  and that of  $Fm_1\delta PC(X) = \{0_X, 1_X, U_1, V_1, W_1\}$  where  $U_1 < S, V_1 \geq 1_X \setminus S, W_1 \geq S$ . Let us consider the identity function  $i : (X, m_1) \rightarrow (X, m)$ . Now  $B \in Fm\delta PC(X)$ . But  $i^{-1}(B) = B \notin Fm_1\delta PC(X) \Rightarrow i$  is not fuzzy  $(m, m_1)$ - $\delta$ -precontinuous function. Now we show that  $i$  is  $fm\delta_p$ - $fm_1g\delta_p$ -continuous function. Now any  $M \in Fm\delta PC(X)$ ,  $i^{-1}(M) = M$ . Then either  $M < S(\in m_1)$  or  $M < 1_X(\in m_1)$ . If  $M < S$ , then  $M \in Fm_1\delta PC(X) \Rightarrow m_1\delta pcl M = M < S$ . But if  $M < 1_X$  only, then  $m_1\delta pcl M < 1_X$ . So  $i$  is  $fm\delta_p$ - $fm_1g\delta_p$ -continuous function.

**Result 4.26.** *If  $f : (X, m) \rightarrow (Y, m_1)$  is fuzzy  $(m, m_1)$ -open, bijective, fuzzy  $(m, m_1)$ - $\delta$ -precontinuous function, then  $f^{-1}(K)$  is  $fm\delta_p$ -closed set in  $X$  for each  $fm_1g\delta_p$ -closed set  $K$  in  $Y$ .*

**Proof.** Let  $K$  be  $fm_1g\delta_p$ -closed set in  $Y$ . Let  $U$  be fuzzy  $m$ -open set in  $X$  such that  $f^{-1}(K) \leq U$ . As  $f$  is fuzzy  $(m, m_1)$ -open and surjective function,  $K = f(f^{-1}(K)) \leq f(U)$  where  $f(U)$  is fuzzy  $m_1$ -open set in  $Y$ . By hypothesis,  $K \leq m_1\delta pcl K \leq f(U)$ . Again  $f$  is fuzzy  $(m, m_1)$ - $\delta$ -precontinuous and injective function,  $f^{-1}(K) \leq m\delta pcl(f^{-1}(K)) \leq m\delta pcl(f^{-1}(m_1\delta pcl K)) = f^{-1}(m_1\delta pcl K) \leq f^{-1}(f(U)) = U \Rightarrow m\delta pcl(f^{-1}(K)) \leq U$  whenever  $f^{-1}(K) \leq U \in m \Rightarrow f^{-1}(K)$  is  $fm\delta_p$ -closed set in  $X$ .

**Theorem 4.27.** *Let  $f : (X, m) \rightarrow (Y, m_1)$  and  $g : (Y, m_1) \rightarrow (Z, m_2)$  be two functions. Then*

- (i) *if  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed and  $g$  is fuzzy  $(m_1, m_2)$ -continuous,  $fm_1\delta_p$ - $fm_2g\delta_p$ -closed functions, then  $g \circ f$  is  $fm\delta_p$ - $fm_2g\delta_p$ -closed function,*
- (ii) *if  $f$  is fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed and  $g$  is  $fm_1\delta_p$ - $fm_2g\delta_p$ -closed functions, then  $g \circ f$  is  $fm\delta_p$ - $fm_2g\delta_p$ -closed function,*
- (iii) *if  $f$  is fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed and  $g$  is  $f(m_1, m_2)g\delta_p$ -closed functions, then  $g \circ f$  is  $fm\delta_p$ - $fm_2g\delta_p$ -closed function.*

**Proof.** (i) Let  $K \in Fm\delta PC(X)$ . As  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed function,  $f(K)$  is  $fm_1g\delta_p$ -closed set in  $Y$ . By Theorem 4.22,  $g(f(K)) = (g \circ f)(K)$  is  $fm_2g\delta_p$ -closed set in  $Z \Rightarrow g \circ f$  is  $fm\delta_p$ - $fm_2g\delta_p$ -closed function.

(ii) Let  $K \in Fm\delta PC(X)$ . As  $f$  is fuzzy strongly  $(m, m_1)$ - $\delta$ -preclosed function,  $f(K) \in Fm_1\delta PC(Y)$ .  $g$  being  $fm_1\delta_p$ - $fm_2g\delta_p$ -closed function,  $g(f(K)) = (g \circ f)(K)$  is  $fm_2g\delta_p$ -closed set in  $Z \Rightarrow g \circ f$  is  $fm\delta_p$ - $fm_2g\delta_p$ -closed function.

(iii) Let  $K \in Fm\delta PC(X)$ . As  $f$  is fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed,  $f(K)$  is fuzzy

$m_1$ -closed set in  $Y$ .  $g$  being  $f(m_1, m_2)g\delta_p$ -closed function,  $g(f(K)) = (g \circ f)(K)$  is  $fm_2g\delta_p$ -closed set in  $Z \Rightarrow g \circ f$  is  $fm\delta_p$ - $fm_2g\delta_p$ -closed function.

**Theorem 4.28.** *Let  $f : (X, m) \rightarrow (Y, m_1)$  and  $g : (Y, m_1) \rightarrow (Z, m_2)$  be two functions and let the composition  $g \circ f : (X, m) \rightarrow (Z, m_2)$  be  $fm\delta_p$ - $fm_2g\delta_p$ -closed function. Then if  $f$  is fuzzy  $(m, m_1)$ - $\delta$ -precontinuous surjective function, then  $g$  is  $fm_1\delta_p$ - $fm_2g\delta_p$ -closed function.*

**Proof.** Let  $K \in Fm_1\delta PC(Y)$ . As  $f$  is fuzzy  $(m, m_1)$ - $\delta$ -precontinuous surjective function,  $f^{-1}(K) \in Fm\delta PC(X)$  and  $(g \circ f)(f^{-1}(K)) = g(K)$  is  $fm_2g\delta_p$ -closed set in  $Z \Rightarrow g$  is  $fm_1\delta_p$ - $fm_2g\delta_p$ -closed function.

**Theorem 4.29.**  *$f : (X, m) \rightarrow (Y, m_1)$  and  $g : (Y, m_1) \rightarrow (Z, m_2)$  be two functions and let the composition  $g \circ f : (X, m) \rightarrow (Z, m_2)$  be  $fm\delta_p$ - $fm_2g\delta_p$ -closed function. Then if  $g$  is fuzzy  $(m_1, m_2)$ -closed,  $fm_1\delta_p$ - $fm_2g\delta_p$ -continuous bijective function, then  $f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed function.*

**Proof.** Let  $K \in Fm\delta PC(X)$ . Then  $(g \circ f)(K)$  is  $fm_2g\delta_p$ -closed set in  $Z$ . Again  $g$  is fuzzy  $(m_1, m_2)$ -closed,  $fm_1\delta_p$ - $fm_2g\delta_p$ -continuous surjective function, by Theorem 4.20,  $g^{-1}((g \circ f)(K)) = f(K)$  (as  $g$  is injective) is  $fm_1g\delta_p$ -closed set in  $Y \Rightarrow f$  is  $fm\delta_p$ - $fm_1g\delta_p$ -closed function.

## 5. Fuzzy $m$ - $\delta_p$ -Normal Space : More Characterizations

In this section we characterize fuzzy  $m$ - $\delta_p$ -normal space by  $fmg\delta_p$ -open set.

**Lemma 5.1.** *A fuzzy set  $A$  in a fuzzy  $m$ -space  $(X, m)$  is  $fmg\delta_p$ -open if and only if  $F \leq m\delta pnt A$  whenever  $F \leq A$  and  $F \in m^c$ .*

**Proof.** First suppose that  $A$  is  $fmg\delta_p$ -open set in  $X$ . Let  $F \in m^c$  be such that  $F \leq A$ . then  $1_X \setminus A \leq 1_X \setminus F \in m$ . By hypothesis,  $m\delta pcl(1_X \setminus A) = 1_X \setminus m\delta pnt A \leq 1_X \setminus F \Rightarrow F \leq m\delta pnt A$ .

Next suppose that  $F \leq m\delta pnt A$  whenever  $F \leq A, F \in m^c$ . We have to show that  $A$  is  $fmg\delta_p$ -open set in  $X$ . Suppose  $F \leq A, F \in m^c$ . Now  $1_X \setminus m\delta pnt A \leq 1_X \setminus F \Rightarrow m\delta pcl(1_X \setminus A) \leq 1_X \setminus F \in m \Rightarrow 1_X \setminus A$  is  $fmg\delta_p$ -closed set in  $X \Rightarrow A$  is  $fmg\delta_p$ -open set in  $X$ .

**Theorem 5.2.** *Let  $(X, m)$  be a fuzzy  $m$ -space where  $m$  satisfies  $\mathcal{B}$  condition. Then the following statements are equivalent :*

- (a)  $X$  is fuzzy  $m$ - $\delta_p$ -normal space,
- (b) for any two fuzzy  $m$ -closed sets  $A, B$  with  $A \not\leq B$ , there exist two  $fmg\delta_p$ -open sets  $U$  and  $V$  in  $X$  such that  $A \leq U, B \leq V$  and  $U \not\leq V$ ,
- (c) for each fuzzy  $m$ -closed set  $A$  and each fuzzy  $m$ -open set  $B$  containing  $A$ , there exists an  $fmg\delta_p$ -open set  $U$  in  $X$  such that  $A \leq U \leq m\delta pcl U \leq B$ ,
- (d) for each fuzzy  $m$ -closed set  $A$  and each  $fmg$ -open set  $B$  containing  $A$ , there

exists  $U \in Fm\delta PO(X)$  such that  $A \leq U \leq m\delta pclU \leq mintB$ ,

(e) for each fuzzy  $m$ -closed set  $A$  and each  $fmg$ -open set  $B$  containing  $A$ , there exists an  $fmg\delta_p$ -open set  $G$  such that  $A \leq G \leq m\delta pclG \leq mintB$ ,

(f) for each  $fmg$ -closed set  $A$  and fuzzy  $m$ -open set  $B$  containing  $A$ , there exists  $U \in Fm\delta PO(X)$  such that  $mclA \leq U \leq m\delta pclU \leq B$ ,

(g) for each  $fmg$ -closed set  $A$  and each fuzzy  $m$ -open set  $B$  containing  $A$ , there exists an  $fmg\delta_p$ -open set  $G$  such that  $mclA \leq G \leq m\delta pclG \leq B$ .

**Proof.** (a)  $\Rightarrow$  (b) Obvious as every fuzzy  $m$ - $\delta$ -preopen set is  $fmg\delta_p$ -open.

(b)  $\Rightarrow$  (a) Let  $A, B$  be two fuzzy  $m$ -closed sets with  $A \not\leq B$ . By (b), there exist  $fmg\delta_p$ -open sets  $U, V$  in  $X$  such that  $A \leq U$ ,  $B \leq V$  and  $U \not\leq V$ . Then  $1_X \setminus U \leq 1_X \setminus A$ ,  $1_X \setminus V \leq 1_X \setminus B$  where  $1_X \setminus U$  and  $1_X \setminus V$  are  $fmg\delta_p$ -closed sets in  $X$  and  $1_X \setminus A \in m$ ,  $1_X \setminus B \in m$ . Then by definition of  $fmg\delta_p$ -closed set,  $m\delta pcl(1_X \setminus U) \leq 1_X \setminus A$ ,  $m\delta pcl(1_X \setminus V) \leq 1_X \setminus B \Rightarrow 1_X \setminus m\delta pclU \leq 1_X \setminus A$ ,  $1_X \setminus m\delta pclV \leq 1_X \setminus B \Rightarrow A \leq m\delta pclU$ ,  $B \leq m\delta pclV$  where  $m\delta pclU$  and  $m\delta pclV$  are fuzzy  $m$ - $\delta$ -preopen sets in  $X$  (as  $m$  satisfies  $\mathcal{B}$  condition) with  $(m\delta pclU) \not\leq (m\delta pclV)$  (as  $U \not\leq V$ ).

(b)  $\Rightarrow$  (c) Let  $A$  be fuzzy  $m$ -closed and  $B$ , fuzzy  $m$ -open sets in  $X$  containing  $A$ . Then  $1_X \setminus B \leq 1_X \setminus A \Rightarrow A \not\leq (1_X \setminus B)$  where  $1_X \setminus B$  is fuzzy  $m$ -closed set in  $X$ . By (b), there exist  $fmg\delta_p$ -open sets  $U, V$  in  $X$  such that  $A \leq U$ ,  $1_X \setminus B \leq V$  and  $U \not\leq V$ . Then  $1_X \setminus V \leq B$  where  $1_X \setminus V$  is  $fmg\delta_p$ -closed and  $B$  is fuzzy  $m$ -open sets in  $X$ . By definition,  $m\delta pcl(1_X \setminus V) \leq B$ . Now  $U \not\leq V \Rightarrow U \leq 1_X \setminus V$ . So  $A \leq U \leq m\delta pclU \leq m\delta pcl(1_X \setminus V) \leq B \Rightarrow A \leq U \leq m\delta pclU \leq B$ .

(c)  $\Rightarrow$  (b) Let  $A, B$  be two fuzzy  $m$ -closed sets in  $X$  with  $A \not\leq B$ . Then  $A \leq 1_X \setminus B$  where  $1_X \setminus B$  is fuzzy  $m$ -open set in  $X$ . By (c), there exists an  $fmg\delta_p$ -open set  $U$  in  $X$  such that  $A \leq U \leq m\delta pclU \leq 1_X \setminus B \Rightarrow A \leq U$ ,  $B \leq 1_X \setminus m\delta pclU = m\delta pcl(1_X \setminus U)$  where  $m\delta pcl(1_X \setminus U)$  being fuzzy  $m$ - $\delta$ -preopen in  $X$  (as  $m$  satisfies  $\mathcal{B}$  condition) is  $fmg\delta_p$ -open set in  $X$  with  $U \not\leq (1_X \setminus m\delta pclU) \Rightarrow U \not\leq m\delta pcl(1_X \setminus U)$ .

(c)  $\Rightarrow$  (d) Let  $A$  be fuzzy  $m$ -closed and  $B$  be  $fmg$ -open sets in  $X$  containing  $A$ . Then  $1_X \setminus B \leq 1_X \setminus A$  where  $1_X \setminus A \in m$ . As  $1_X \setminus B$  is  $fmg$ -closed set in  $X$ ,  $mcl(1_X \setminus B) \leq 1_X \setminus A \Rightarrow 1_X \setminus mintB \leq 1_X \setminus A \Rightarrow A \leq mintB$  and  $mintB \in m$  (as  $m$  satisfies  $\mathcal{B}$  condition). By (c), there exists an  $fmg\delta_p$ -open set  $G$  such that  $A \leq G \leq m\delta pclG \leq mintB$ . Since  $G$  is  $fmg\delta_p$ -open set, by Lemma 5.1,  $A \leq m\delta pclG$ . Take  $U = m\delta pclG$ . Then  $U \in Fm\delta PO(X)$  (as  $m$  satisfies  $\mathcal{B}$  condition) such that  $A \leq U \leq m\delta pclU = m\delta pcl(m\delta pclG) \leq m\delta pclG \leq mintB$ .

(d)  $\Rightarrow$  (e) The proof is immediate as every fuzzy  $m$ - $\delta$ -preopen set is  $fmg\delta_p$ -open.

(e)  $\Rightarrow$  (f) Let  $A$  be  $fmg$ -closed set in  $X$  and  $B$ , a fuzzy  $m$ -open set in  $X$  containing  $A$ . Then  $mclA \leq B$  where  $mclA \in m^c$  (as  $m$  satisfies  $\mathcal{B}$  condition). Since fuzzy  $m$ -open set is  $fmg$ -open, by (e) there exists an  $fmg\delta_p$ -open set  $G$  such that

$mclA \leq G \leq m\delta pclG \leq B$ . Since  $G$  is  $fmg\delta_p$ -open set and  $mclA \leq G$ , by Lemma 5.1  $mclA \leq m\delta pointG$ . Put  $U = m\delta pointG$ . Then  $mclA \leq U \leq m\delta pclU = m\delta pcl(m\delta pointG) \leq m\delta pclG \leq B$ .

(f)  $\Rightarrow$  (g) The proof is immediate as every fuzzy  $m$ - $\delta$ -preopen set is  $fmg\delta_p$ -open set.

(g)  $\Rightarrow$  (c) The proof is immediate as every fuzzy  $m$ -closed set is  $fmg$ -closed.

**Theorem 5.3.** *If  $f : (X, m) \rightarrow (Y, m_1)$  is a fuzzy  $(m, m_1)$ -continuous, fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed bijective function and  $X$  is fuzzy  $m$ - $\delta_p$ -normal space, then  $Y$  is fuzzy  $m_1$ -normal space.*

**Proof.** Let  $A, B$  be two fuzzy  $m$ -closed sets in  $Y$  with  $A \not\subset B$ . Then  $f^{-1}(A), f^{-1}(B)$  are fuzzy  $m$ -closed sets in  $X$  with  $f^{-1}(A) \not\subset f^{-1}(B)$ . As  $X$  is fuzzy  $m$ - $\delta_p$ -normal space, there exist  $U, V \in Fm\delta PO(X)$  such that  $f^{-1}(A) \leq U, f^{-1}(B) \leq V$  and  $U \not\subset V$ . Let  $W_1 = 1_Y \setminus f(1_X \setminus U), W_2 = 1_Y \setminus f(1_X \setminus V)$ . As  $f$  is fuzzy quasi  $(m, m_1)$ - $\delta$ -preclosed,  $f(1_X \setminus U), f(1_X \setminus V)$  are fuzzy  $m_1$ -closed sets in  $Y$  and so  $W_1, W_2$  are fuzzy  $m_1$ -open sets in  $Y$ . As  $f$  is surjective,  $A \leq f(U), B \leq f(V)$ . Again we know that  $f(1_X \setminus U) \leq 1_Y \setminus f(U) \Rightarrow W_1 = 1_Y \setminus f(1_X \setminus U) \geq f(U)$  and also  $W_2 \geq f(V)$ . So  $A \leq W_1, B \leq W_2$ . we claim that  $W_1 \not\subset W_2$ . Indeed, if there is some  $y \in Y$  such that  $W_1(y) + W_2(y) > 1$ . Then as  $f$  being injective  $1 - (1_X \setminus U)(f^{-1}(y)) + 1 - (1_X \setminus V)(f^{-1}(y)) > 1 \Rightarrow 1 - 1 + U(f^{-1}(y)) + 1 - 1 + V(f^{-1}(y)) > 1 \Rightarrow U(f^{-1}(y)) + V(f^{-1}(y)) > 1 \Rightarrow U \not\subset V$ , a contradiction. Hence  $Y$  is fuzzy  $m_1$ -normal space.

**Theorem 5.4.** *Let  $f : (X, m) \rightarrow (Y, m_1)$  be a fuzzy  $(m, m_1)$ -closed,  $fmg\delta_p$ - $fmg_1g\delta_p$ -continuous, injective function where  $m$  satisfies  $\mathcal{B}$  condition. If  $Y$  is fuzzy  $m_1$ - $\delta_p$ -normal space, then  $X$  is fuzzy  $m$ - $\delta_p$ -normal space.*

**Proof.** Let  $A, B$  be two fuzzy  $m$ -closed sets in  $X$  with  $A \not\subset B$ . As  $f$  is fuzzy  $(m, m_1)$ -closed function,  $f(A), f(B) \in m_1^c$  with  $f(A) \not\subset f(B)$ . Indeed, if  $f(A) \subset f(B)$ , then there exists  $y \in Y$  such that  $[f(A)](y) + [f(B)](y) > 1 \Rightarrow A(f^{-1}(y)) + B(f^{-1}(y)) > 1$  (as  $f$  is injective)  $\Rightarrow A \not\subset B$ , a contradiction. As  $Y$  is fuzzy  $m_1$ - $\delta_p$ -normal space, there exist  $U, V \in Fm_1\delta PO(Y)$  such that  $f(A) \leq U, f(B) \leq V$  and  $U \not\subset V$ . As  $f$  is  $fmg\delta_p$ - $fmg_1g\delta_p$ -continuous function,  $f^{-1}(U), f^{-1}(V)$  are  $fmg\delta_p$ -open sets in  $X$  with  $f^{-1}(U) \not\subset f^{-1}(V)$  and  $A \leq f^{-1}(U), B \leq f^{-1}(V)$ . By Theorem 5.2 (b)  $\Rightarrow$  (a),  $X$  is fuzzy  $m$ - $\delta_p$ -normal space.

**Theorem 5.5.** *If  $f : (X, m) \rightarrow (Y, m_1)$  is a fuzzy  $(m, m_1)$ -closed, fuzzy  $(m, m_1)$ - $\delta$ -precontinuous, injective function and  $Y$  is fuzzy  $m_1$ - $\delta_p$ -normal space, then  $X$  is fuzzy  $m$ - $\delta_p$ -normal space.*

**Proof.** The proof follows from Remark 4.24 and Theorem 5.4.

**Lemma 5.6.** *A surjective function  $f : (X, m) \rightarrow (Y, m_1)$  is almost  $f(m, m_1)g\delta_p$ -closed if and only if for each  $B \in I^Y$  and each  $U \in FmRO(X)$  with  $f^{-1}(B) \leq U$ , there exists an  $fm_1g\delta_p$ -open set  $V$  of  $Y$  such that  $B \leq V$  and  $f^{-1}(V) \leq U$ .*

**Proof.** First suppose that  $f$  is almost  $f(m, m_1)g\delta_p$ -closed function. Let  $B \in I^Y$  and  $U \in FmRO(X)$  with  $f^{-1}(B) \leq U$ . As  $f$  is surjective,  $B = f(f^{-1}(B)) \leq f(U)$ . Let  $V = 1_Y \setminus f(1_X \setminus U)$ . As  $f$  is almost  $f(m, m_1)g\delta_p$ -closed function,  $V$  is  $fm_1g\delta_p$ -open set in  $Y$ . Now  $V = 1_Y \setminus f(1_X \setminus U) \geq 1_Y \setminus (1_Y \setminus f(U)) = f(U)$  and so  $B \leq f(U) \leq V$ . Again  $f^{-1}(V) = f^{-1}(1_Y \setminus f(1_X \setminus U)) = 1_X \setminus f^{-1}(f(1_X \setminus U)) \leq 1_X \setminus (1_X \setminus U) = U$ .

Conversely, let  $K \in FmRC(X)$ . Now  $f^{-1}(1_Y \setminus f(K)) = 1_X \setminus f^{-1}(f(K)) \leq 1_X \setminus K \in FmRO(X)$ . By assumption, there exists an  $fm_1g\delta_p$ -open set  $V$  of  $Y$  such that  $1_Y \setminus f(K) \leq V$  and  $f^{-1}(V) \leq 1_X \setminus K$ . Then  $f(K) \geq 1_Y \setminus V$  and  $K \leq 1_X \setminus f^{-1}(V) = f^{-1}(1_Y \setminus V) \Rightarrow f(K) \leq f(f^{-1}(1_Y \setminus V)) \leq 1_Y \setminus V \Rightarrow f(K) = 1_Y \setminus V \Rightarrow f(K)$  is  $fm_1g\delta_p$ -closed set in  $Y$ . Hence  $f$  is almost  $f(m, m_1)g\delta_p$ -closed function.

**Lemma 5.7.** *If  $f : (X, m) \rightarrow (Y, m_1)$  is almost  $f(m, m_1)g\delta_p$ -closed surjective function where  $m_1$  satisfies  $\mathcal{B}$  condition, then for each fuzzy  $m_1$ -closed set  $C$  of  $Y$  and each  $U \in FmRO(X)$  with  $f^{-1}(C) \leq U$ , there exists  $V \in Fm_1\delta PO(Y)$  such that  $C \leq V$  and  $f^{-1}(V) \leq U$ .*

**Proof.** Let  $C$  be fuzzy  $m_1$ -closed set in  $Y$  and  $U \in FmRO(X)$  with  $f^{-1}(C) \leq U$ . By Lemma 5.6, there exists an  $fm_1g\delta_p$ -open set  $V$  of  $Y$  such that  $C \leq V$  and  $f^{-1}(V) \leq U$ . Now  $1_Y \setminus V \leq 1_Y \setminus C$  where  $1_Y \setminus C$  is fuzzy  $m_1$ -open set and  $1_Y \setminus V$  is  $fm_1g\delta_p$ -closed set in  $Y \Rightarrow m_1\deltapcl(1_Y \setminus V) \leq 1_Y \setminus C \Rightarrow 1_Y \setminus m_1\deltapintV \leq 1_Y \setminus C \Rightarrow C \leq m_1\deltapintV = W$  (say). Then  $W \in Fm_1\delta PO(Y)$  (as  $m_1$  satisfies  $\mathcal{B}$  condition) and  $f^{-1}(W) = f^{-1}(m_1\deltapintV) \leq f^{-1}(V) \leq U$ .

**Theorem 5.8.** *Let  $f : (X, m) \rightarrow (Y, m_1)$  be a fuzzy  $(m, m_1)$ -continuous, almost  $f(m, m_1)g\delta_p$ -closed, bijective function where  $m$  satisfies  $\mathcal{B}$  condition. If  $X$  is fuzzy  $m$ -normal space, then  $Y$  is fuzzy  $m_1$ - $\delta_p$ -normal space.*

**Proof.** Let  $A, B$  be fuzzy  $m_1$ -closed sets in  $Y$  with  $A \not\leq B$ . Since  $f$  is fuzzy  $(m, m_1)$ -continuous function,  $f^{-1}(A), f^{-1}(B)$  are fuzzy  $m$ -closed sets in  $X$  with  $f^{-1}(A) \not\leq f^{-1}(B)$ . Since  $X$  is fuzzy  $m$ -normal space, there are fuzzy  $m$ -open sets  $U_1, U_2$  in  $X$  such that  $f^{-1}(A) \leq U_1$ ,  $f^{-1}(B) \leq U_2$  and  $U_1 \not\leq U_2$ . Let  $G_1 = mintmclU_1, G_2 = mintmclU_2$ . Then as  $m$  satisfies  $\mathcal{B}$  condition,  $G_1, G_2 \in FmRO(X)$  and  $f^{-1}(A) \leq U_1 \leq mintmclU_1 = G_1$  and  $f^{-1}(B) \leq U_2 \leq mintmclU_2 = G_2$ . By Lemma 5.7, there exist  $V_1, V_2 \in Fm_1\delta PO(Y)$  such that  $A \leq V_1, B \leq V_2$  and  $f^{-1}(V_1) \leq G_1, f^{-1}(V_2) \leq G_2$ . We claim that  $G_1 \not\leq G_2$ . Indeed,  $U_1 \not\leq U_2 \Rightarrow U_1 \not\leq mintmclU_2$  (as  $U_1$  is fuzzy  $m$ -open)  $\Rightarrow U_1 \not\leq mintmclU_2 \Rightarrow mclU_1 \not\leq mintmclU_2$  (as

$\text{mintmcl}U_2$  is fuzzy  $m$ -open as  $m$  satisfies  $\mathcal{B}$  condition)  $\Rightarrow \text{mintmcl}U_1 \not\subset \text{mintmcl}U_2 \Rightarrow G_1 \not\subset G_2$ . As  $f$  is surjective,  $V_1 \leq f(G_1)$ ,  $V_2 \leq f(G_2)$  and  $V_1 \not\subset V_2$ . Infact, if there is some  $y \in Y$  such that  $V_1(y) + V_2(y) > 1$ , then  $[f(G_1)](y) + [f(G_2)](y) > 1 \Rightarrow G_1(f^{-1}(y)) + G_2(f^{-1}(y)) > 1$  (as  $f$  is bijective)  $\Rightarrow G_1 \not\subset G_2$ , a contradiction.

**Corollary 5.9.** *If  $f : (X, m) \rightarrow (Y, m_1)$  is a fuzzy  $(m, m_1)$ -continuous, fuzzy  $(m, m_1)$ - $\delta$ -preclosed bijective function and  $X$  is fuzzy  $m$ -normal space, then  $Y$  is fuzzy  $m_1$ - $\delta_p$ -normal space.*

**Proof.** The proof follows from Theorem 5.8 using the fact that fuzzy  $(m, m_1)$ - $\delta$ -preclosed function is almost  $f(m, m_1)g\delta_p$ -closed function.

## 6. Conclusion

Here we introduce and study different types of generalized version of fuzzy closed sets and closed types functions in fuzzy  $m$ -space. Using these types of sets we characterize fuzzy  $m$ - $\delta_p$ -normal space. Also applications of these sets and functions are established here.

## References

- [1] Alimohammady, M. and Roohi, M., Fuzzy minimal structure and fuzzy minimal vector spaces, *Chaos, Solitons and Fractals*, 27 (2006), 599-605.
- [2] Bhattacharyya, Anjana, Fuzzy upper and lower  $M$ -continuous multifunctions, “Vasile Alecsandri” University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 21(2) (2015), 125-144.
- [3] Bhattacharyya, Anjana, Several concepts of continuity in fuzzy  $m$ -space, *Annals of Fuzzy Mathematics and Informatics*, 13(2) (2017), 5-21.
- [4] Bhattacharyya, Anjana, Generalized closed set and generalized continuity in fuzzy  $m$ -space, “Vasile Alecsandri” University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 29(1) (2019), 41-58.
- [5] Bhattacharyya, Anjana,  $\delta$ -precontinuity in fuzzy minimal space, (Communicated).
- [6] Bhattacharyya, Anjana, Generalized preclosed set in fuzzy minimal space, (Communicated).
- [7] Bhattacharyya, Anjana, Different forms of normal spaces in fuzzy  $m$ -space, (Communicated).

- [8] Brescan, M., On quasi-irresolute function in fuzzy minimal structures, BULETINUL Universității Petrol - Gaze din Ploiești, Seria Matematică-Informatică-Fizică, Vol. LXII, (No. 1) (2010), 19-25.
- [9] Chang, C.L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [10] Nematollahi, M. J. and Roohi, M., Fuzzy minimal structures and fuzzy minimal subspaces, Italian Journal of Pure and Applied Mathematics, 27 (2010), 147-156.
- [11] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl. 76 (1980), 571-599.
- [12] Zadeh, L.A., Fuzzy Sets, Inform. Control, 8 (1965), 338-353.