

J. of Ramanujan Society of Mathematics and Mathematical Sciences
Vol. 13, No. 1 (2025), pp. 173-182

DOI: 10.56827/JRSMMS.2025.1301.12

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

**FUZZY METRIC APPROACH TO (κ, α, β) -INTERPOLATIVE
KANNAN CONTRACTIONS AND NONLINEAR
INTEGRAL EQUATIONS**

Jaynendra Shrivats and Rohit Kumar Verma*

Department of Mathematics,
Shahid Durwasha Nishad Govt. College,
Arjunda, Balod, 491225, Chhattisgarh, INDIA

E-mail : jayshrivats95@gmail.com

*Department of Mathematics,
Govt. Chandulal Chandrakar Arts and Science College,
Patan, Durg, 491111, Chhattisgarh, INDIA

E-mail : rohitverma1967@rediffmail.com

(Received: Dec. 03, 2025 Accepted: Dec. 28, 2025 Published: Dec. 30, 2025)

Abstract: In this paper, we extend the concept of interpolative Kannan-type contractions to complete fuzzy metric spaces and establish the existence and uniqueness of fixed points. A Picard iteration scheme is shown to converge to the unique fixed point. An illustrative example involving a nonlinear integral equation demonstrates the applicability of the main result.

Keywords and Phrases: Fuzzy metric space, interpolative Kannan contraction, fixed point.

2020 Mathematics Subject Classification: 47H10, 49T99, 54H25.

1. Introduction

Fixed point theory plays a fundamental role in nonlinear analysis and has wide-ranging applications in areas such as optimization, control theory, differential equations, and computer science. Since the introduction of Banach's Contraction Principle [2], many generalizations have been proposed in metric fixed point theory.

Among these, Kannan's contraction [9, 10] is particularly significant because it guarantees the existence of fixed points even for certain discontinuous mappings.

A notable recent development in this direction was introduced by Karapinar [6] in the form of an interpolative Kannan-type contraction. It was shown in [6] (see also [1, 4, 7, 8]) that every such mapping admits at least one fixed point in a complete metric space. More precisely, we have the following result.

Theorem 1.1. (Karapinar [6]) *Let (X, d) be a complete metric space and let $T : X \rightarrow X$ be a self mapping satisfying the interpolative Kannan-type contractive condition, that is, there exist constants $\kappa \in [0, 1)$ and $\gamma \in (0, 1)$ such that*

$$d(Tx, Ty) \leq \kappa d(x, Tx)^\gamma d(y, Ty)^{1-\gamma}$$

for all $x, y \in X \setminus \text{Fix}(T)$, where

$$\text{Fix}(T) = \{x \in X : Tx = x\}.$$

Then the mapping T possesses at least one fixed point in X .

In parallel with these advances, the theory of fuzzy metric spaces, initiated by Kramosil and Michalek [11] and later refined by George and Veeramani [5], has provided a powerful framework for handling uncertainty and vagueness in metric concepts. This framework has proven to be particularly useful in applications involving imprecise data, such as decision-making, pattern recognition, and artificial intelligence.

2. Preliminaries

Now, we begin with some basic definitions.

Definition 2.1. *A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous t-norm if it satisfies the following conditions:*

- (i) $*$ is commutative and associative;
- (ii) $*$ is continuous;
- (iii) $a * 1 = a, \forall a \in [0, 1]$;
- (iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for all $a, b, c, d \in [0, 1]$.

Example 2.2. $a * b = \min\{a, b\}$ and $a * b = ab$ are t-norms.

The concept of fuzzy metric spaces was introduced by Kramosil and Michalek [11] as follows:

Definition 2.3. A fuzzy metric space is an ordered triple $(X, M, *)$ such that X is a nonempty set, $*$ is a continuous t -norm and M is a fuzzy set on $X \times X \times (0, \infty)$ satisfying the following conditions, for all $x, y, z \in X$ and $s, t > 0$:

- (i) $M(x, y, 0) = 0$;
- (ii) $M(x, y, t) = 1$ for all $t > 0$ if and only if $x = y$;
- (iii) $M(x, y, t) = M(y, x, t)$ (symmetry);
- (iv) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s)$;
- (v) $M(x, y, \cdot) : (0, \infty) \rightarrow (0, 1]$ is continuous.

Note that $M(x, y, t)$ can be interpreted as the degree of nearness between x and y with respect to t .

Example 2.4. Let (X, d) be a metric space. Define $a * b = ab$ for all $a, b \in [0, 1]$. Define

$$M(x, y, t) = \frac{t}{t + d(x, y)}, \quad \forall x, y \in X, t > 0.$$

Then $(X, M, *)$ is a fuzzy metric space. This fuzzy metric induced by the metric d is called the standard fuzzy metric.

Definition 2.5. Let $(X, M, *)$ be a fuzzy metric space. Then

- (a) a sequence $\{x_n\}$ in X is said to

- (i) be a Cauchy sequence if

$$\lim_{n \rightarrow \infty} M(x_{n+p}, x_n, t) = 1, \quad \forall t > 0, n, p \in \mathbb{N};$$

- (ii) be convergent to a point $x \in X$ if

$$\lim_{n \rightarrow \infty} M(x_n, x, t) = 1, \quad \forall t > 0.$$

- (b) X is said to be complete if every Cauchy sequence in X converges to some point in X .

Example 2.6. Let $X = [0, 1]$ and let $*$ be the continuous t -norm defined by $a * b = ab$ for all $a, b \in [0, 1]$. For each $t \in (0, \infty)$ and $x, y \in X$, define

$$M(x, y, t) = \begin{cases} \frac{t}{t + |x - y|^2}, & \text{if } t > 0, \\ 0, & \text{if } t = 0. \end{cases}$$

Clearly, $(X, M, *)$ is a complete fuzzy metric space.

Inspired by Karapinar et al. [6], Prachi et al. [12] introduced the concept of fuzzy interpolative Kannan-type contractions.

Definition 2.7. *Let $(X, M, *)$ be a complete fuzzy metric space. A mapping $T: X \rightarrow X$ is said to be a fuzzy interpolative Kannan-type contraction on X if there exist constants $\kappa \in [0, 1)$, $\gamma \in (0, 1)$, and $t > 0$ such that*

$$M(Tx, Ty, t) > \kappa [M(x, Tx, t)^\gamma * M(y, Ty, t)^{1-\gamma}],$$

for all $x, y \in X \setminus \text{Fix}(T)$, where

$$\text{Fix}(T) = \{x \in X : Tx = x\}.$$

Theorem 2.8. *Let $(X, M, *)$ be a complete fuzzy metric space. If $T: X \rightarrow X$ is a fuzzy interpolative Kannan-type contraction, then T has a unique fixed point in X .*

3. Main Results

We start with the following definition.

Definition 3.1. *Let $(X, M, *)$ be a fuzzy metric space and let $T: X \rightarrow X$ be a self-mapping. Then T is called a (κ, α, β) -interpolative Kannan-type contraction if there exist constants $\kappa \in (0, 1)$ and $\alpha, \beta \in (0, 1)$ with $\alpha + \beta < 1$ such that*

$$M(Tx, Ty, t) \geq [M(x, Tx, t)^\alpha * M(y, Ty, t)^\beta]^\kappa$$

for all $x, y \in X$ with $x \neq Tx$ and $y \neq Ty$, and for all $t > 0$, where $*$ is a continuous t -norm.

Theorem 3.2. *Let $(X, M, *)$ be a complete fuzzy metric space and assume that $*$ is the product t -norm, that is, $a * b = a \cdot b$. Let $T: X \rightarrow X$ be a (κ, α, β) -interpolative Kannan-type contraction. Then there exist constants $\kappa \in (0, 1)$ and $\alpha, \beta \in (0, 1)$ with $\alpha + \beta < 1$ such that for all $x, y \in X$ with $x \neq Tx$ and $y \neq Ty$ and for every $t > 0$,*

$$M(Tx, Ty, t) \geq (M(x, Tx, t)^\alpha M(y, Ty, t)^\beta)^\kappa.$$

Then T has a unique fixed point $x^ \in X$.*

Proof. Fix an arbitrary $x_0 \in X$ and define the Picard sequence

$$x_{n+1} = Tx_n, \quad n = 0, 1, 2, \dots$$

For simplicity, for each fixed $t > 0$, set

$$a_n := M(x_n, x_{n+1}, t) = M(Tx_{n-1}, Tx_n, t), \quad n \geq 1.$$

By the contractive hypothesis we have, for every $n \geq 1$,

$$a_{n+1} = M(Tx_n, Tx_{n+1}, t) \geq (M(x_n, x_{n+1}, t)^\alpha M(x_{n+1}, x_{n+2}, t)^\beta)^\kappa = (a_n^\alpha a_{n+1}^\beta)^\kappa.$$

Since we are using the product t -norm this becomes

$$a_{n+1} \geq a_n^{\kappa\alpha} a_{n+1}^{\kappa\beta}.$$

Rearranging (noting $1 - \kappa\beta > 0$ because $\kappa, \beta \in (0, 1)$), we obtain

$$a_{n+1}^{1-\kappa\beta} \geq a_n^{\kappa\alpha}, \quad \text{hence} \quad a_{n+1} \geq a_n^{\frac{\kappa\alpha}{1-\kappa\beta}}. \quad (*)$$

Put $\theta := \frac{\kappa\alpha}{1-\kappa\beta}$. Using $\alpha + \beta < 1$ and $\kappa \in (0, 1)$ one checks $0 < \theta < 1$. From $(*)$ we get the recursive estimate

$$a_{n+1} \geq a_n^\theta, \quad n \geq 1.$$

Iterating this inequality yields, for every $m \geq 1$,

$$a_{n+m} \geq a_n^{\theta^m}.$$

Fix n and let $m \rightarrow \infty$. Since $0 < \theta < 1$ we have $\theta^m \rightarrow 0$, and for any $a_n \in (0, 1]$ it follows that $a_n^{\theta^m} \rightarrow 1$. Therefore for each fixed n ,

$$\lim_{m \rightarrow \infty} a_{n+m} = 1,$$

which implies

$$\lim_{k \rightarrow \infty} a_k = 1 \quad (\text{for the chosen } t > 0).$$

Because the above holds for every $t > 0$, we conclude

$$\lim_{n \rightarrow \infty} M(x_n, x_{n+1}, t) = 1 \quad \text{for all } t > 0.$$

Next we prove that (x_n) is a Cauchy sequence in the fuzzy metric sense. Let $\varepsilon \in (0, 1)$ and $t > 0$ be arbitrary. Choose N large enough so that for all $n \geq N$ we have $M(x_n, x_{n+1}, t/2) > 1 - \delta$ for a small $\delta > 0$ (possible since $M(x_n, x_{n+1}, t/2) \rightarrow 1$). Using the triangle-type property of a fuzzy metric (see definition of fuzzy metric), for any $p > q \geq N$ we can write (by repeated application)

$$M(x_q, x_p, t) \geq M(x_q, x_{q+1}, t/p_q) * M(x_{q+1}, x_{q+2}, t/p_q) * \cdots * M(x_{p-1}, x_p, t/p_q),$$

for a suitable partition of t (standard argument — one may take equal subintervals). Because each factor on the right is arbitrarily close to 1 for large indices, their $*$ -product tends to 1. Hence for sufficiently large q, p we obtain $M(x_q, x_p, t) > 1 - \varepsilon$. This shows (x_n) is Cauchy in the fuzzy metric. By completeness of $(X, M, *)$ there exists $x^* \in X$ such that $x_n \rightarrow x^*$ (that is $M(x_n, x^*, t) \rightarrow 1$ for every $t > 0$).

It remains to show x^* is a fixed point of T . Using continuity properties of M and the contractive condition, for any $t > 0$,

$$M(Tx^*, x^*, t) \geq (M(x^*, Tx^*, t)^\alpha M(Tx^*, Tx^*, t)^\beta)^\kappa.$$

Note that $M(Tx^*, Tx^*, t) = 1$. Thus

$$M(Tx^*, x^*, t) \geq M(x^*, Tx^*, t)^{\kappa\alpha}.$$

If $M(x^*, Tx^*, t) < 1$ for some $t > 0$ then the above inequality forces a strict increase under the power $\kappa\alpha \in (0, 1)$ which contradicts the fact $M(x_n, Tx^*, t) \rightarrow 1$ as $n \rightarrow \infty$ (one can pass to the limit along $x_n \rightarrow x^*$ and use the contractive estimate with x_n and x^*). Hence $M(x^*, Tx^*, t) = 1$ for all $t > 0$, that is $x^* = Tx^*$.

Finally, uniqueness: suppose y^* is another fixed point. Then for every $t > 0$,

$$M(x^*, y^*, t) = M(Tx^*, Ty^*, t) \geq (M(x^*, Tx^*, t)^\alpha M(y^*, Ty^*, t)^\beta)^\kappa = 1,$$

so $M(x^*, y^*, t) = 1$ for all $t > 0$, which implies $x^* = y^*$. Thus the fixed point is unique.

Example 3.3. Let

$$X = \{x, y, z\}$$

and define a metric d on X by the distance matrix

	x	y	z
x	0	2	2
y	2	0	1
z	2	1	0

(One easily checks the triangle inequalities hold.)

Define the self-map $T : X \rightarrow X$ by

$$T(x) = y, \quad T(y) = y, \quad T(z) = y.$$

Thus y is the unique fixed point of T and x, z are non-fixed.

Equip X with the exponential (George–Veeramani type) fuzzy metric

$$M(u, v, t) := \exp(-d(u, v)/t), \quad t > 0,$$

and take the product t -norm $a * b = a \cdot b$. Then $(X, M, *)$ is a complete fuzzy metric space.

Choose the parameters

$$\alpha = \frac{1}{4}, \quad \beta = \frac{1}{2}, \quad \kappa = \frac{3}{4}.$$

Note that $\alpha, \beta \in (0, 1)$, $\kappa \in (0, 1)$ and $\alpha + \beta = \frac{3}{4} < 1$, so the triplet (κ, α, β) is admissible.

We verify the (κ, α, β) -interpolative Kannan condition in exponent form: for all $u, v \in X$ with $u \neq Tu$ and $v \neq Tv$ and for every $t > 0$,

$$M(Tu, Tv, t) \geq (M(u, Tu, t)^\alpha * M(v, Tv, t)^\beta)^\kappa.$$

Since the set of non-fixed points is $\{x, z\}$ and $T(x) = T(z) = y$, for any choice $u, v \in \{x, z\}$ we have

$$M(Tu, Tv, t) = M(y, y, t) = 1.$$

On the right-hand side we have

$$(M(u, Tu, t)^\alpha * M(v, Tv, t)^\beta)^\kappa = (M(u, y, t)^\alpha M(v, y, t)^\beta)^\kappa \leq 1,$$

because $0 < M(w, y, t) \leq 1$ for every $w \in X$. Therefore, for every $t > 0$ and all $u, v \in \{x, z\}$,

$$M(Tu, Tv, t) = 1 \geq (M(u, Tu, t)^\alpha * M(v, Tv, t)^\beta)^\kappa,$$

so the hypothesis of Theorem 3.2 is satisfied.

Hence, by Theorem 3.2, the map T has a unique fixed point in X , namely y .

4. Application: Nonlinear integral equation

Consider the nonlinear integral equation

$$x(t) = \int_0^1 K(t, s) f(s, x(s)) ds, \quad t \in [0, 1], \quad (4.1)$$

where $K : [0, 1]^2 \rightarrow [0, 1]$ is continuous and $f : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and satisfies

$$|f(s, u) - f(s, v)| \leq \lambda |u - f(s, u)|^\alpha |v - f(s, v)|^\beta,$$

for some constants $\lambda \in [0, 1)$, $\alpha, \beta \in (0, 1)$ with $\alpha + \beta < 1$.

Define the operator $T : C([0, 1], \mathbb{R}) \rightarrow C([0, 1], \mathbb{R})$ by

$$(Tx)(t) := \int_0^1 K(t, s) f(s, x(s)) ds.$$

Equip $C([0, 1], \mathbb{R})$ with the fuzzy metric

$$M(x, y, t) = e^{-\|x-y\|/t}, \quad t > 0,$$

and the product t -norm $a * b = a \cdot b$.

Then for all $x, y \in C([0, 1], \mathbb{R})$ with $x \neq Tx$ and $y \neq Ty$,

$$M(Tx, Ty, t) \geq (M(x, Tx, t)^\alpha * M(y, Ty, t)^\beta)^\kappa,$$

for some $\kappa \in (0, 1)$, that is, T is a fuzzy (κ, α, β) -interpolative Kannan contraction.

By Theorem 3.2, T has a unique fixed point $x^* \in C([0, 1], \mathbb{R})$, which is the unique continuous solution of (4.1).

Example. Consider the nonlinear integral equation

$$x(t) = \int_0^1 \frac{1}{2} \sin(x(s)) ds, \quad t \in [0, 1]. \quad (4.2)$$

Define the operator $T : C([0, 1], \mathbb{R}) \rightarrow C([0, 1], \mathbb{R})$ by

$$(Tx)(t) := \int_0^1 \frac{1}{2} \sin(x(s)) ds.$$

Equip $C([0, 1], \mathbb{R})$ with the fuzzy metric

$$M(x, y, t) = e^{-\|x-y\|/t}, \quad t > 0,$$

and the product t -norm $a * b = a \cdot b$, making $(C([0, 1], \mathbb{R}), M, *)$ a complete fuzzy metric space.

Choose the parameters

$$\alpha = \frac{1}{3}, \quad \beta = \frac{1}{3}, \quad \kappa = \frac{1}{2},$$

so that $\alpha + \beta < 1$ and $\kappa \in (0, 1)$.

For any $x, y \in C([0, 1], \mathbb{R})$ with $x \neq Tx$ and $y \neq Ty$, we have

$$\|Tx - Ty\| \leq \frac{1}{2} \leq \kappa \|x - Tx\|^\alpha \|y - Ty\|^\beta,$$

which implies in the fuzzy metric

$$M(Tx, Ty, t) \geq (M(x, Tx, t)^\alpha * M(y, Ty, t)^\beta)^\kappa.$$

Hence, T is a fuzzy (κ, α, β) -interpolative Kannan contraction. By Theorem 3.2, T has a unique fixed point $x^* \in C([0, 1], \mathbb{R})$, which is the unique continuous solution of the integral equation (4.2).

4. Conclusion

We established that (κ, α, β) -interpolative Kannan contractions in complete fuzzy metric spaces have a unique fixed point. The Picard iteration converges to this point, as illustrated by a nonlinear integral equation example, highlighting the method's applicability.

References

- [1] Aydi H., Karapinar E. and Roldán López de Hierro A. F., ω -interpolative Čirić–Reich–Rus-type contractions, *Mathematics*, 7 (2019), Article 57.
- [2] Banach S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, *Fundamenta Mathematicae*, 3 (1922), 133-181.
- [3] Čirić L., Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Belgrade, Serbia, 2003.
- [4] Debnath P., Radenović S. and Mitrović Z. D., Interpolative Hardy–Rogers and Reich–Rus–Čirić-type contractions in rectangular b -metric spaces and b -metric spaces, *Mathematical Vesnik*, 71 (2019), 264-277.
- [5] George A. and Veeramani P., On some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, 64 (1994), 395-399.
- [6] Karapinar E., Revisiting the Kannan-type contractions via interpolation, *Advances in the Theory of Nonlinear Analysis and its Applications*, 2 (2018), 85-87.
- [7] Karapinar E. and Fulga A., New hybrid contractions on b -metric spaces, *Mathematics*, 7 (2019), Article 578.
- [8] Karapinar E., Alqahtani O. and Aydi H., On interpolative Hardy–Rogers-type contractions, *Symmetry*, 11 (2019), Article 8.

- [9] Kannan R., Some results on fixed points, *Bulletin of the Calcutta Mathematical Society*, 60 (1968), 71-76.
- [10] Kannan R., Some results on fixed points II, *American Mathematical Monthly*, 76 (1969), 405-408.
- [11] Kramosil I. and Michalek J., Fuzzy metric and statistical metric spaces, *Kybernetika*, 11 (1975), 326-334.
- [12] Singh P. and Soni H., Fuzzy fixed point results for interpolative Kannan-type contractions, *Engineering Mathematics Letters*, 2025 (2025), Article 6.
- [13] Todorčević V., *Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics*, Springer, Cham, 2019.
- [14] Zadeh L. A., Fuzzy sets, *Information and Control*, 8 (1965), 338-353.