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Abstract: In this paper, we extend the concept of interpolative Kannan-type con-
tractions to complete fuzzy metric spaces and establish the existence and unique-
ness of fixed points. A Picard iteration scheme is shown to converge to the unique
fixed point. An illustrative example involving a nonlinear integral equation demon-
strates the applicability of the main result.
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1. Introduction
Fixed point theory plays a fundamental role in nonlinear analysis and has wide-

ranging applications in areas such as optimization, control theory, differential equa-
tions, and computer science. Since the introduction of Banach’s Contraction Prin-
ciple [2], many generalizations have been proposed in metric fixed point theory.
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Among these, Kannan’s contraction [9, 10] is particularly significant because it
guarantees the existence of fixed points even for certain discontinuous mappings.

A notable recent development in this direction was introduced by Karapınar
[6] in the form of an interpolative Kannan-type contraction. It was shown in [6]
(see also [1, 4, 7, 8]) that every such mapping admits at least one fixed point in a
complete metric space. More precisely, we have the following result.

Theorem 1.1. (Karapınar [6]) Let (X, d) be a complete metric space and let
T : X → X be a self mapping satisfying the interpolative Kannan-type contractive
condition, that is, there exist constants κ ∈ [0, 1) and γ ∈ (0, 1) such that

d(Tx, Ty) ≤ κ d(x, Tx)γ d(y, Ty)1−γ

for all x, y ∈ X \ Fix(T ), where

Fix(T ) = {x ∈ X : Tx = x}.

Then the mapping T possesses at least one fixed point in X.
In parallel with these advances, the theory of fuzzy metric spaces, initiated by

Kramosil and Michalek [11] and later refined by George and Veeramani [5], has
provided a powerful framework for handling uncertainty and vagueness in metric
concepts. This framework has proven to be particularly useful in applications in-
volving imprecise data, such as decision-making, pattern recognition, and artificial
intelligence.

2. Preliminaries
Now, we begin with some basic definitions.

Definition 2.1. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is commutative and associative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a, ∀a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Example 2.2. a ∗ b = min{a, b} and a ∗ b = ab are t-norms.
The concept of fuzzy metric spaces was introduced by Kramosil and Michalek

[11] as follows:
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Definition 2.3. A fuzzy metric space is an ordered triple (X,M, ∗) such that X is
a nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on X ×X × (0,∞)
satisfying the following conditions, for all x, y, z ∈ X and s, t > 0 :

(i) M(x, y, 0) = 0;

(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(iii) M(x, y, t) = M(y, x, t) (symmetry);

(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);

(v) M(x, y, ·) : (0,∞) → (0, 1] is continuous.

Note that M(x, y, t) can be interpreted as the degree of nearness between x and
y with respect to t.

Example 2.4. Let (X, d) be a metric space. Define a ∗ b = ab for all a, b ∈ [0, 1].
Define

M(x, y, t) =
t

t+ d(x, y)
, ∀x, y ∈ X, t > 0.

Then (X,M, ∗) is a fuzzy metric space. This fuzzy metric induced by the metric d
is called the standard fuzzy metric.

Definition 2.5. Let (X,M, ∗) be a fuzzy metric space. Then

(a) a sequence {xn} in X is said to

(i) be a Cauchy sequence if

lim
n→∞

M(xn+p, xn, t) = 1, ∀t > 0, n, p ∈ N;

(ii) be convergent to a point x ∈ X if

lim
n→∞

M(xn, x, t) = 1, ∀t > 0.

(b) X is said to be complete if every Cauchy sequence in X converges to some
point in X.

Example 2.6. Let X = [0, 1] and let ∗ be the continuous t-norm defined by
a ∗ b = ab for all a, b ∈ [0, 1]. For each t ∈ (0,∞) and x, y ∈ X, define

M(x, y, t) =


t

t+ |x− y|2
, if t > 0,

0, if t = 0.



176 J. of Ramanujan Society of Mathematics and Mathematical Sciences

Clearly, (X,M, ∗) is a complete fuzzy metric space.
Inspired by Karapınar et al. [6], Prachi et al. [12] introduced the concept of

fuzzy interpolative Kannan-type contractions.

Definition 2.7. Let (X,M, ∗) be a complete fuzzy metric space. A mapping
T : X → X is said to be a fuzzy interpolative Kannan-type contraction on X if
there exist constants κ ∈ [0, 1), γ ∈ (0, 1), and t > 0 such that

M(Tx, Ty, t) > κ
[
M(x, Tx, t)γ ∗M(y, Ty, t)1−γ

]
,

for all x, y ∈ X \ Fix(T ), where

Fix(T ) = {x ∈ X : Tx = x}.

Theorem 2.8. Let (X,M, ∗) be a complete fuzzy metric space. If T : X → X is a
fuzzy interpolative Kannan-type contraction, then T has a unique fixed point in X.

3. Main Results
We start with the following definition.

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space and let T : X → X be a
self-mapping. Then T is called a (κ, α, β)-interpolative Kannan-type contraction if
there exist constants κ ∈ (0, 1) and α, β ∈ (0, 1) with α + β < 1 such that

M(Tx, Ty, t) ≥
[
M(x, Tx, t)α ∗M(y, Ty, t)β

]κ
for all x, y ∈ X with x ̸= Tx and y ̸= Ty, and for all t > 0, where ∗ is a continuous
t-norm.

Theorem 3.2. Let (X,M, ∗) be a complete fuzzy metric space and assume that ∗ is
the product t-norm, that is, a∗ b = a · b. Let T : X → X be a (κ, α, β)-interpolative
Kannan-type contraction. Then there exist constants κ ∈ (0, 1) and α, β ∈ (0, 1)
with α + β < 1 such that for all x, y ∈ X with x ̸= Tx and y ̸= Ty and for every
t > 0,

M(Tx, Ty, t) ≥
(
M(x, Tx, t)αM(y, Ty, t)β

)κ

.

Then T has a unique fixed point x∗ ∈ X.
Proof. Fix an arbitrary x0 ∈ X and define the Picard sequence

xn+1 = Txn, n = 0, 1, 2, . . . .

For simplicity, for each fixed t > 0, set
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an := M(xn, xn+1, t) = M(Txn−1, Txn, t), n ≥ 1.

By the contractive hypothesis we have, for every n ≥ 1,

an+1 = M(Txn, Txn+1, t) ≥
(
M(xn, xn+1, t)

αM(xn+1, xn+2, t)
β
)κ

=
(
aαna

β
n+1

)κ
.

Since we are using the product t-norm this becomes

an+1 ≥ aκαn aκβn+1.

Rearranging (noting 1− κβ > 0 because κ, β ∈ (0, 1)), we obtain

a 1−κβ
n+1 ≥ aκα

n , hence an+1 ≥ a
κα

1−κβ
n . (*)

Put θ :=
κα

1− κβ
. Using α + β < 1 and κ ∈ (0, 1) one checks 0 < θ < 1. From (∗)

we get the recursive estimate

an+1 ≥ aθn, n ≥ 1.

Iterating this inequality yields, for every m ≥ 1,

an+m ≥ aθ
m

n .

Fix n and let m → ∞. Since 0 < θ < 1 we have θm → 0, and for any an ∈ (0, 1] it
follows that aθ

m

n → 1. Therefore for each fixed n,

lim
m→∞

an+m = 1,

which implies
lim
k→∞

ak = 1 (for the chosen t > 0).

Because the above holds for every t > 0, we conclude

lim
n→∞

M(xn, xn+1, t) = 1 for all t > 0.

Next we prove that (xn) is a Cauchy sequence in the fuzzy metric sense. Let ε ∈
(0, 1) and t > 0 be arbitrary. Choose N large enough so that for all n ≥ N we have
M(xn, xn+1, t/2) > 1 − δ for a small δ > 0 (possible since M(xn, xn+1, t/2) → 1).
Using the triangle-type property of a fuzzy metric (see definition of fuzzy metric),
for any p > q ≥ N we can write (by repeated application)

M(xq, xp, t) ≥ M(xq, xq+1, t/pq) ∗ M(xq+1, xq+2, t/pq) ∗ · · · ∗M(xp−1, xp, t/pq),
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for a suitable partition of t (standard argument — one may take equal subintervals).
Because each factor on the right is arbitrarily close to 1 for large indices, their ∗-
product tends to 1. Hence for sufficiently large q, p we obtain M(xq, xp, t) > 1− ε.
This shows (xn) is Cauchy in the fuzzy metric. By completeness of (X,M, ∗) there
exists x∗ ∈ X such that xn → x∗ (that is M(xn, x

∗, t) → 1 for every t > 0).
It remains to show x∗ is a fixed point of T . Using continuity properties of M

and the contractive condition, for any t > 0,

M(Tx∗, x∗, t) ≥
(
M(x∗, Tx∗, t)αM(Tx∗, Tx∗, t)β

)κ
.

Note that M(Tx∗, Tx∗, t) = 1. Thus

M(Tx∗, x∗, t) ≥ M(x∗, Tx∗, t)κα.

If M(x∗, Tx∗, t) < 1 for some t > 0 then the above inequality forces a strict increase
under the power κα ∈ (0, 1) which contradicts the factM(xn, Tx

∗, t) → 1 as n → ∞
(one can pass to the limit along xn → x∗ and use the contractive estimate with xn

and x∗). Hence M(x∗, Tx∗, t) = 1 for all t > 0, that is x∗ = Tx∗.
Finally, uniqueness: suppose y∗ is another fixed point. Then for every t > 0,

M(x∗, y∗, t) = M(Tx∗, T y∗, t) ≥
(
M(x∗, Tx∗, t)αM(y∗, T y∗, t)β

)κ
= 1,

so M(x∗, y∗, t) = 1 for all t > 0, which implies x∗ = y∗. Thus the fixed point is
unique.

Example 3.3. Let
X = {x, y, z}

and define a metric d on X by the distance matrix

x y z
x 0 2 2
y 2 0 1
z 2 1 0

(One easily checks the triangle inequalities hold.)
Define the self-map T : X → X by

T (x) = y, T (y) = y, T (z) = y.

Thus y is the unique fixed point of T and x, z are non-fixed.
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Equip X with the exponential (George–Veeramani type) fuzzy metric

M(u, v, t) := exp
(
− d(u, v)/t

)
, t > 0,

and take the product t-norm a∗b = a ·b. Then (X,M, ∗) is a complete fuzzy metric
space.

Choose the parameters

α = 1
4
, β = 1

2
, κ = 3

4
.

Note that α, β ∈ (0, 1), κ ∈ (0, 1) and α + β = 3
4
< 1, so the triplet (κ, α, β) is

admissible.
We verify the (κ, α, β)-interpolative Kannan condition in exponent form: for all

u, v ∈ X with u ̸= Tu and v ̸= Tv and for every t > 0,

M(Tu, Tv, t) ≥
(
M(u, Tu, t)α ∗M(v, Tv, t)β

)κ
.

Since the set of non-fixed points is {x, z} and T (x) = T (z) = y, for any choice
u, v ∈ {x, z} we have

M(Tu, Tv, t) = M(y, y, t) = 1.

On the right-hand side we have(
M(u, Tu, t)α ∗M(v, Tv, t)β

)κ
=

(
M(u, y, t)αM(v, y, t)β

)κ ≤ 1,

because 0 < M(w, y, t) ≤ 1 for every w ∈ X. Therefore, for every t > 0 and all
u, v ∈ {x, z},

M(Tu, Tv, t) = 1 ≥
(
M(u, Tu, t)α ∗M(v, Tv, t)β

)κ
,

so the hypothesis of Theorem 3.2 is satisfied.
Hence, by Theorem 3.2, the map T has a unique fixed point in X, namely y.

4. Application: Nonlinear integral equation
Consider the nonlinear integral equation

x(t) =

∫ 1

0

K(t, s)f(s, x(s)) ds, t ∈ [0, 1], (4.1)

where K : [0, 1]2 → [0, 1] is continuous and f : [0, 1] × R → R is continuous and
satisfies

|f(s, u)− f(s, v)| ≤ λ|u− f(s, u)|α|v − f(s, v)|β,
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for some constants λ ∈ [0, 1), α, β ∈ (0, 1) with α + β < 1.
Define the operator T : C([0, 1],R) → C([0, 1],R) by

(Tx)(t) :=

∫ 1

0

K(t, s)f(s, x(s)) ds.

Equip C([0, 1],R) with the fuzzy metric

M(x, y, t) = e−∥x−y∥/t, t > 0,

and the product t-norm a ∗ b = a · b.
Then for all x, y ∈ C([0, 1],R) with x ̸= Tx and y ̸= Ty,

M(Tx, Ty, t) ≥
(
M(x, Tx, t)α ∗M(y, Ty, t)β

)κ
,

for some κ ∈ (0, 1), that is, T is a fuzzy (κ, α, β)-interpolative Kannan contraction.
By Theorem 3.2, T has a unique fixed point x∗ ∈ C([0, 1],R), which is the

unique continuous solution of (4.1).

Example. Consider the nonlinear integral equation

x(t) =

∫ 1

0

1

2
sin(x(s)) ds, t ∈ [0, 1]. (4.2)

Define the operator T : C([0, 1],R) → C([0, 1],R) by

(Tx)(t) :=

∫ 1

0

1

2
sin(x(s)) ds.

Equip C([0, 1],R) with the fuzzy metric

M(x, y, t) = e−∥x−y∥/t, t > 0,

and the product t-norm a ∗ b = a · b, making (C([0, 1],R),M, ∗) a complete fuzzy
metric space.

Choose the parameters

α =
1

3
, β =

1

3
, κ =

1

2
,

so that α + β < 1 and κ ∈ (0, 1).
For any x, y ∈ C([0, 1],R) with x ̸= Tx and y ̸= Ty, we have

∥Tx− Ty∥ ≤ 1

2
≤ κ ∥x− Tx∥α ∥y − Ty∥β,
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which implies in the fuzzy metric

M(Tx, Ty, t) ≥
(
M(x, Tx, t)α ∗M(y, Ty, t)β

)κ
.

Hence, T is a fuzzy (κ, α, β)-interpolative Kannan contraction. By Theorem 3.2,
T has a unique fixed point x∗ ∈ C([0, 1],R), which is the unique continuous solution
of the integral equation (4.2).

4. Conclusion
We established that (κ, α, β)-interpolative Kannan contractions in complete

fuzzy metric spaces have a unique fixed point. The Picard iteration converges to
this point, as illustrated by a nonlinear integral equation example, highlighting the
method’s applicability.
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